ref #65, new formula functions: MINVERSE and MMULT

pull/2/head
xuri 3 years ago
parent 396cf99d45
commit c0d341706d
No known key found for this signature in database
GPG Key ID: BA5E5BB1C948EDF7

@ -549,7 +549,9 @@ type formulaFuncs struct {
// MINA
// MINIFS
// MINUTE
// MINVERSE
// MIRR
// MMULT
// MOD
// MODE
// MODE.MULT
@ -4042,37 +4044,167 @@ func det(sqMtx [][]float64) float64 {
return res
}
// newNumberMatrix converts a formula arguments matrix to a number matrix.
func newNumberMatrix(arg formulaArg, phalanx bool) (numMtx [][]float64, ele formulaArg) {
rows := len(arg.Matrix)
for r, row := range arg.Matrix {
if phalanx && len(row) != rows {
ele = newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
return
}
numMtx = append(numMtx, make([]float64, len(row)))
for c, cell := range row {
if ele = cell.ToNumber(); ele.Type != ArgNumber {
return
}
numMtx[r][c] = ele.Number
}
}
return
}
// newFormulaArgMatrix converts the number formula arguments matrix to a
// formula arguments matrix.
func newFormulaArgMatrix(numMtx [][]float64) (arg [][]formulaArg) {
for r, row := range numMtx {
arg = append(arg, make([]formulaArg, len(row)))
for c, cell := range row {
arg[r][c] = newNumberFormulaArg(cell)
}
}
return
}
// MDETERM calculates the determinant of a square matrix. The
// syntax of the function is:
//
// MDETERM(array)
//
func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
var (
num float64
numMtx [][]float64
err error
strMtx [][]formulaArg
)
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires 1 argument")
}
numMtx, errArg := newNumberMatrix(argsList.Front().Value.(formulaArg), true)
if errArg.Type == ArgError {
return errArg
}
return newNumberFormulaArg(det(numMtx))
}
// cofactorMatrix returns the matrix A of cofactors.
func cofactorMatrix(i, j int, A [][]float64) float64 {
N, sign := len(A), -1.0
if (i+j)%2 == 0 {
sign = 1
}
var B [][]float64
for _, row := range A {
B = append(B, row)
}
for m := 0; m < N; m++ {
for n := j + 1; n < N; n++ {
B[m][n-1] = B[m][n]
}
B[m] = B[m][:len(B[m])-1]
}
for k := i + 1; k < N; k++ {
B[k-1] = B[k]
}
B = B[:len(B)-1]
return sign * det(B)
}
// adjugateMatrix returns transpose of the cofactor matrix A with Cramer's
// rule.
func adjugateMatrix(A [][]float64) (adjA [][]float64) {
N := len(A)
var B [][]float64
for i := 0; i < N; i++ {
adjA = append(adjA, make([]float64, N))
for j := 0; j < N; j++ {
for m := 0; m < N; m++ {
for n := 0; n < N; n++ {
for x := len(B); x <= m; x++ {
B = append(B, []float64{})
}
strMtx = argsList.Front().Value.(formulaArg).Matrix
rows := len(strMtx)
for _, row := range argsList.Front().Value.(formulaArg).Matrix {
if len(row) != rows {
for k := len(B[m]); k <= n; k++ {
B[m] = append(B[m], 0)
}
B[m][n] = A[m][n]
}
}
adjA[i][j] = cofactorMatrix(j, i, B)
}
}
return
}
// MINVERSE function calculates the inverse of a square matrix. The syntax of
// the function is:
//
// MINVERSE(array)
//
func (fn *formulaFuncs) MINVERSE(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "MINVERSE requires 1 argument")
}
numMtx, errArg := newNumberMatrix(argsList.Front().Value.(formulaArg), true)
if errArg.Type == ArgError {
return errArg
}
if detM := det(numMtx); detM != 0 {
datM, invertM := 1/detM, adjugateMatrix(numMtx)
for i := 0; i < len(invertM); i++ {
for j := 0; j < len(invertM[i]); j++ {
invertM[i][j] *= datM
}
}
return newMatrixFormulaArg(newFormulaArgMatrix(invertM))
}
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
// MMULT function calculates the matrix product of two arrays
// (representing matrices). The syntax of the function is:
//
// MMULT(array1,array2)
//
func (fn *formulaFuncs) MMULT(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "MMULT requires 2 argument")
}
numMtx1, errArg1 := newNumberMatrix(argsList.Front().Value.(formulaArg), false)
if errArg1.Type == ArgError {
return errArg1
}
numMtx2, errArg2 := newNumberMatrix(argsList.Back().Value.(formulaArg), false)
if errArg2.Type == ArgError {
return errArg2
}
array2Rows, array2Cols := len(numMtx2), len(numMtx2[0])
if len(numMtx1[0]) != array2Rows {
return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
}
var numRow []float64
for _, ele := range row {
if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
var numMtx [][]float64
var row1, row []float64
var sum float64
for i := 0; i < len(numMtx1); i++ {
numMtx = append(numMtx, []float64{})
row = []float64{}
row1 = numMtx1[i]
for j := 0; j < array2Cols; j++ {
sum = 0
for k := 0; k < array2Rows; k++ {
sum += row1[k] * numMtx2[k][j]
}
numRow = append(numRow, num)
for l := len(row); l <= j; l++ {
row = append(row, 0)
}
numMtx = append(numMtx, numRow)
row[j] = sum
numMtx[i] = row
}
return newNumberFormulaArg(det(numMtx))
}
return newMatrixFormulaArg(newFormulaArgMatrix(numMtx))
}
// MOD function returns the remainder of a division between two supplied

@ -571,6 +571,10 @@ func TestCalcCellValue(t *testing.T) {
"=IMPRODUCT(\"1-i\",\"5+10i\",2)": "30+10i",
"=IMPRODUCT(COMPLEX(5,2),COMPLEX(0,1))": "-2+5i",
"=IMPRODUCT(A1:C1)": "4",
// MINVERSE
"=MINVERSE(A1:B2)": "",
// MMULT
"=MMULT(A4:A4,A4:A4)": "",
// MOD
"=MOD(6,4)": "2",
"=MOD(6,3)": "0",
@ -2336,7 +2340,17 @@ func TestCalcCellValue(t *testing.T) {
"=LOG10()": "LOG10 requires 1 numeric argument",
`=LOG10("X")`: "strconv.ParseFloat: parsing \"X\": invalid syntax",
// MDETERM
"MDETERM()": "MDETERM requires at least 1 argument",
"=MDETERM()": "MDETERM requires 1 argument",
// MINVERSE
"=MINVERSE()": "MINVERSE requires 1 argument",
"=MINVERSE(B3:C4)": "strconv.ParseFloat: parsing \"\": invalid syntax",
"=MINVERSE(A1:C2)": "#VALUE!",
"=MINVERSE(A4:A4)": "#NUM!",
// MMULT
"=MMULT()": "MMULT requires 2 argument",
"=MMULT(A1:B2,B3:C4)": "strconv.ParseFloat: parsing \"\": invalid syntax",
"=MMULT(B3:C4,A1:B2)": "strconv.ParseFloat: parsing \"\": invalid syntax",
"=MMULT(A1:A2,B1:B2)": "#VALUE!",
// MOD
"=MOD()": "MOD requires 2 numeric arguments",
"=MOD(6,0)": "MOD divide by zero",

Loading…
Cancel
Save