|
|
@ -415,6 +415,7 @@ type formulaFuncs struct {
|
|
|
|
// FALSE
|
|
|
|
// FALSE
|
|
|
|
// FIND
|
|
|
|
// FIND
|
|
|
|
// FINDB
|
|
|
|
// FINDB
|
|
|
|
|
|
|
|
// FINV
|
|
|
|
// FISHER
|
|
|
|
// FISHER
|
|
|
|
// FISHERINV
|
|
|
|
// FISHERINV
|
|
|
|
// FIXED
|
|
|
|
// FIXED
|
|
|
@ -5835,6 +5836,340 @@ func (fn *formulaFuncs) EXPONDIST(argsList *list.List) formulaArg {
|
|
|
|
return newNumberFormulaArg(lambda.Number * math.Exp(-lambda.Number*x.Number))
|
|
|
|
return newNumberFormulaArg(lambda.Number * math.Exp(-lambda.Number*x.Number))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// d1mach returns double precision real machine constants.
|
|
|
|
|
|
|
|
func d1mach(i int) float64 {
|
|
|
|
|
|
|
|
arr := []float64{
|
|
|
|
|
|
|
|
2.2250738585072014e-308,
|
|
|
|
|
|
|
|
1.7976931348623158e+308,
|
|
|
|
|
|
|
|
1.1102230246251565e-16,
|
|
|
|
|
|
|
|
2.2204460492503131e-16,
|
|
|
|
|
|
|
|
0.301029995663981195,
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if i > len(arr) {
|
|
|
|
|
|
|
|
return 0
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return arr[i-1]
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// chebyshevInit determines the number of terms for the double precision
|
|
|
|
|
|
|
|
// orthogonal series "dos" needed to insure the error is no larger
|
|
|
|
|
|
|
|
// than "eta". Ordinarily eta will be chosen to be one-tenth machine
|
|
|
|
|
|
|
|
// precision.
|
|
|
|
|
|
|
|
func chebyshevInit(nos int, eta float64, dos []float64) int {
|
|
|
|
|
|
|
|
i, e := 0, 0.0
|
|
|
|
|
|
|
|
if nos < 1 {
|
|
|
|
|
|
|
|
return 0
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
for ii := 1; ii <= nos; ii++ {
|
|
|
|
|
|
|
|
i = nos - ii
|
|
|
|
|
|
|
|
e += math.Abs(dos[i])
|
|
|
|
|
|
|
|
if e > eta {
|
|
|
|
|
|
|
|
return i
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return i
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// chebyshevEval evaluates the n-term Chebyshev series "a" at "x".
|
|
|
|
|
|
|
|
func chebyshevEval(n int, x float64, a []float64) float64 {
|
|
|
|
|
|
|
|
if n < 1 || n > 1000 || x < -1.1 || x > 1.1 {
|
|
|
|
|
|
|
|
return math.NaN()
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
twox, b0, b1, b2 := x*2, 0.0, 0.0, 0.0
|
|
|
|
|
|
|
|
for i := 1; i <= n; i++ {
|
|
|
|
|
|
|
|
b2 = b1
|
|
|
|
|
|
|
|
b1 = b0
|
|
|
|
|
|
|
|
b0 = twox*b1 - b2 + a[n-i]
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return (b0 - b2) * 0.5
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// lgammacor is an implementation for the log(gamma) correction.
|
|
|
|
|
|
|
|
func lgammacor(x float64) float64 {
|
|
|
|
|
|
|
|
algmcs := []float64{
|
|
|
|
|
|
|
|
0.1666389480451863247205729650822, -0.1384948176067563840732986059135e-4,
|
|
|
|
|
|
|
|
0.9810825646924729426157171547487e-8, -0.1809129475572494194263306266719e-10,
|
|
|
|
|
|
|
|
0.6221098041892605227126015543416e-13, -0.3399615005417721944303330599666e-15,
|
|
|
|
|
|
|
|
0.2683181998482698748957538846666e-17, -0.2868042435334643284144622399999e-19,
|
|
|
|
|
|
|
|
0.3962837061046434803679306666666e-21, -0.6831888753985766870111999999999e-23,
|
|
|
|
|
|
|
|
0.1429227355942498147573333333333e-24, -0.3547598158101070547199999999999e-26,
|
|
|
|
|
|
|
|
0.1025680058010470912000000000000e-27, -0.3401102254316748799999999999999e-29,
|
|
|
|
|
|
|
|
0.1276642195630062933333333333333e-30,
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
nalgm := chebyshevInit(15, d1mach(3), algmcs)
|
|
|
|
|
|
|
|
xbig := 1.0 / math.Sqrt(d1mach(3))
|
|
|
|
|
|
|
|
xmax := math.Exp(math.Min(math.Log(d1mach(2)/12.0), -math.Log(12.0*d1mach(1))))
|
|
|
|
|
|
|
|
if x < 10.0 {
|
|
|
|
|
|
|
|
return math.NaN()
|
|
|
|
|
|
|
|
} else if x >= xmax {
|
|
|
|
|
|
|
|
return 4.930380657631324e-32
|
|
|
|
|
|
|
|
} else if x < xbig {
|
|
|
|
|
|
|
|
tmp := 10.0 / x
|
|
|
|
|
|
|
|
return chebyshevEval(nalgm, tmp*tmp*2.0-1.0, algmcs) / x
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1.0 / (x * 12.0)
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// logrelerr compute the relative error logarithm.
|
|
|
|
|
|
|
|
func logrelerr(x float64) float64 {
|
|
|
|
|
|
|
|
alnrcs := []float64{
|
|
|
|
|
|
|
|
0.10378693562743769800686267719098e+1, -0.13364301504908918098766041553133,
|
|
|
|
|
|
|
|
0.19408249135520563357926199374750e-1, -0.30107551127535777690376537776592e-2,
|
|
|
|
|
|
|
|
0.48694614797154850090456366509137e-3, -0.81054881893175356066809943008622e-4,
|
|
|
|
|
|
|
|
0.13778847799559524782938251496059e-4, -0.23802210894358970251369992914935e-5,
|
|
|
|
|
|
|
|
0.41640416213865183476391859901989e-6, -0.73595828378075994984266837031998e-7,
|
|
|
|
|
|
|
|
0.13117611876241674949152294345011e-7, -0.23546709317742425136696092330175e-8,
|
|
|
|
|
|
|
|
0.42522773276034997775638052962567e-9, -0.77190894134840796826108107493300e-10,
|
|
|
|
|
|
|
|
0.14075746481359069909215356472191e-10, -0.25769072058024680627537078627584e-11,
|
|
|
|
|
|
|
|
0.47342406666294421849154395005938e-12, -0.87249012674742641745301263292675e-13,
|
|
|
|
|
|
|
|
0.16124614902740551465739833119115e-13, -0.29875652015665773006710792416815e-14,
|
|
|
|
|
|
|
|
0.55480701209082887983041321697279e-15, -0.10324619158271569595141333961932e-15,
|
|
|
|
|
|
|
|
0.19250239203049851177878503244868e-16, -0.35955073465265150011189707844266e-17,
|
|
|
|
|
|
|
|
0.67264542537876857892194574226773e-18, -0.12602624168735219252082425637546e-18,
|
|
|
|
|
|
|
|
0.23644884408606210044916158955519e-19, -0.44419377050807936898878389179733e-20,
|
|
|
|
|
|
|
|
0.83546594464034259016241293994666e-21, -0.15731559416479562574899253521066e-21,
|
|
|
|
|
|
|
|
0.29653128740247422686154369706666e-22, -0.55949583481815947292156013226666e-23,
|
|
|
|
|
|
|
|
0.10566354268835681048187284138666e-23, -0.19972483680670204548314999466666e-24,
|
|
|
|
|
|
|
|
0.37782977818839361421049855999999e-25, -0.71531586889081740345038165333333e-26,
|
|
|
|
|
|
|
|
0.13552488463674213646502024533333e-26, -0.25694673048487567430079829333333e-27,
|
|
|
|
|
|
|
|
0.48747756066216949076459519999999e-28, -0.92542112530849715321132373333333e-29,
|
|
|
|
|
|
|
|
0.17578597841760239233269760000000e-29, -0.33410026677731010351377066666666e-30,
|
|
|
|
|
|
|
|
0.63533936180236187354180266666666e-31,
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
nlnrel := chebyshevInit(43, 0.1*d1mach(3), alnrcs)
|
|
|
|
|
|
|
|
if x <= -1 {
|
|
|
|
|
|
|
|
return math.NaN()
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if math.Abs(x) <= 0.375 {
|
|
|
|
|
|
|
|
return x * (1.0 - x*chebyshevEval(nlnrel, x/0.375, alnrcs))
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return math.Log(x + 1.0)
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// logBeta is an implementation for the log of the beta distribution
|
|
|
|
|
|
|
|
// function.
|
|
|
|
|
|
|
|
func logBeta(a, b float64) float64 {
|
|
|
|
|
|
|
|
corr, p, q := 0.0, a, a
|
|
|
|
|
|
|
|
if b < p {
|
|
|
|
|
|
|
|
p = b
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if b > q {
|
|
|
|
|
|
|
|
q = b
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if p < 0 {
|
|
|
|
|
|
|
|
return math.NaN()
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if p == 0 {
|
|
|
|
|
|
|
|
return math.MaxFloat64
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if p >= 10.0 {
|
|
|
|
|
|
|
|
corr = lgammacor(p) + lgammacor(q) - lgammacor(p+q)
|
|
|
|
|
|
|
|
return math.Log(q)*-0.5 + 0.918938533204672741780329736406 + corr + (p-0.5)*math.Log(p/(p+q)) + q*logrelerr(-p/(p+q))
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if q >= 10 {
|
|
|
|
|
|
|
|
corr = lgammacor(q) - lgammacor(p+q)
|
|
|
|
|
|
|
|
val, _ := math.Lgamma(p)
|
|
|
|
|
|
|
|
return val + corr + p - p*math.Log(p+q) + (q-0.5)*logrelerr(-p/(p+q))
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return math.Log(math.Gamma(p) * (math.Gamma(q) / math.Gamma(p+q)))
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// pbetaRaw is a part of pbeta for the beta distribution.
|
|
|
|
|
|
|
|
func pbetaRaw(alnsml, ans, eps, p, pin, q, sml, x, y float64) float64 {
|
|
|
|
|
|
|
|
if q > 1.0 {
|
|
|
|
|
|
|
|
xb := p*math.Log(y) + q*math.Log(1.0-y) - logBeta(p, q) - math.Log(q)
|
|
|
|
|
|
|
|
ib := int(math.Max(xb/alnsml, 0.0))
|
|
|
|
|
|
|
|
term := math.Exp(xb - float64(ib)*alnsml)
|
|
|
|
|
|
|
|
c := 1.0 / (1.0 - y)
|
|
|
|
|
|
|
|
p1 := q * c / (p + q - 1.0)
|
|
|
|
|
|
|
|
finsum := 0.0
|
|
|
|
|
|
|
|
n := int(q)
|
|
|
|
|
|
|
|
if q == float64(n) {
|
|
|
|
|
|
|
|
n = n - 1
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
for i := 1; i <= n; i++ {
|
|
|
|
|
|
|
|
if p1 <= 1 && term/eps <= finsum {
|
|
|
|
|
|
|
|
break
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
xi := float64(i)
|
|
|
|
|
|
|
|
term = (q - xi + 1.0) * c * term / (p + q - xi)
|
|
|
|
|
|
|
|
if term > 1.0 {
|
|
|
|
|
|
|
|
ib = ib - 1
|
|
|
|
|
|
|
|
term = term * sml
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if ib == 0 {
|
|
|
|
|
|
|
|
finsum = finsum + term
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
ans = ans + finsum
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if y != x || p != pin {
|
|
|
|
|
|
|
|
ans = 1.0 - ans
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
ans = math.Max(math.Min(ans, 1.0), 0.0)
|
|
|
|
|
|
|
|
return ans
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// pbeta returns distribution function of the beta distribution.
|
|
|
|
|
|
|
|
func pbeta(x, pin, qin float64) (ans float64) {
|
|
|
|
|
|
|
|
eps := d1mach(3)
|
|
|
|
|
|
|
|
alneps := math.Log(eps)
|
|
|
|
|
|
|
|
sml := d1mach(1)
|
|
|
|
|
|
|
|
alnsml := math.Log(sml)
|
|
|
|
|
|
|
|
y := x
|
|
|
|
|
|
|
|
p := pin
|
|
|
|
|
|
|
|
q := qin
|
|
|
|
|
|
|
|
if p/(p+q) < x {
|
|
|
|
|
|
|
|
y = 1.0 - y
|
|
|
|
|
|
|
|
p = qin
|
|
|
|
|
|
|
|
q = pin
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if (p+q)*y/(p+1.0) < eps {
|
|
|
|
|
|
|
|
xb := p*math.Log(math.Max(y, sml)) - math.Log(p) - logBeta(p, q)
|
|
|
|
|
|
|
|
if xb > alnsml && y != 0.0 {
|
|
|
|
|
|
|
|
ans = math.Exp(xb)
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if y != x || p != pin {
|
|
|
|
|
|
|
|
ans = 1.0 - ans
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
ps := q - math.Floor(q)
|
|
|
|
|
|
|
|
if ps == 0.0 {
|
|
|
|
|
|
|
|
ps = 1.0
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
xb := p*math.Log(y) - logBeta(ps, p) - math.Log(p)
|
|
|
|
|
|
|
|
if xb >= alnsml {
|
|
|
|
|
|
|
|
ans = math.Exp(xb)
|
|
|
|
|
|
|
|
term := ans * p
|
|
|
|
|
|
|
|
if ps != 1.0 {
|
|
|
|
|
|
|
|
n := int(math.Max(alneps/math.Log(y), 4.0))
|
|
|
|
|
|
|
|
for i := 1; i <= n; i++ {
|
|
|
|
|
|
|
|
xi := float64(i)
|
|
|
|
|
|
|
|
term = term * (xi - ps) * y / xi
|
|
|
|
|
|
|
|
ans = ans + term/(p+xi)
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
ans = pbetaRaw(alnsml, ans, eps, p, pin, q, sml, x, y)
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return ans
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// betainvProbIterator is a part of betainv for the inverse of the beta function.
|
|
|
|
|
|
|
|
func betainvProbIterator(alpha1, alpha3, beta1, beta2, beta3, logbeta, lower, maxCumulative, prob1, prob2, upper float64, needSwap bool) float64 {
|
|
|
|
|
|
|
|
var i, j, prev, prop4 float64
|
|
|
|
|
|
|
|
j = 1
|
|
|
|
|
|
|
|
for prob := 0; prob < 1000; prob++ {
|
|
|
|
|
|
|
|
prop3 := pbeta(beta3, alpha1, beta1)
|
|
|
|
|
|
|
|
prop3 = (prop3 - prob1) * math.Exp(logbeta+prob2*math.Log(beta3)+beta2*math.Log(1.0-beta3))
|
|
|
|
|
|
|
|
if prop3*prop4 <= 0 {
|
|
|
|
|
|
|
|
prev = math.Max(math.Abs(j), maxCumulative)
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
h := 1.0
|
|
|
|
|
|
|
|
for iteratorCount := 0; iteratorCount < 1000; iteratorCount++ {
|
|
|
|
|
|
|
|
j = h * prop3
|
|
|
|
|
|
|
|
if math.Abs(j) < prev {
|
|
|
|
|
|
|
|
i = beta3 - j
|
|
|
|
|
|
|
|
if i >= 0 && i <= 1.0 {
|
|
|
|
|
|
|
|
if prev <= alpha3 {
|
|
|
|
|
|
|
|
return beta3
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if math.Abs(prop3) <= alpha3 {
|
|
|
|
|
|
|
|
return beta3
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if i != 0 && i != 1.0 {
|
|
|
|
|
|
|
|
break
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
h /= 3.0
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if i == beta3 {
|
|
|
|
|
|
|
|
return beta3
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
beta3, prop4 = i, prop3
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return beta3
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// betainv is an implementation for the quantile of the beta distribution.
|
|
|
|
|
|
|
|
func betainv(probability, alpha, beta, lower, upper float64) float64 {
|
|
|
|
|
|
|
|
minCumulative, maxCumulative := 1.0e-300, 3.0e-308
|
|
|
|
|
|
|
|
lowerBound, upperBound := maxCumulative, 1.0-2.22e-16
|
|
|
|
|
|
|
|
needSwap := false
|
|
|
|
|
|
|
|
var alpha1, alpha2, beta1, beta2, beta3, prob1, x, y float64
|
|
|
|
|
|
|
|
if probability <= 0.5 {
|
|
|
|
|
|
|
|
prob1, alpha1, beta1 = probability, alpha, beta
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
prob1, alpha1, beta1, needSwap = 1.0-probability, beta, alpha, true
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
logbeta := logBeta(alpha, beta)
|
|
|
|
|
|
|
|
prob2 := math.Sqrt(-math.Log(prob1 * prob1))
|
|
|
|
|
|
|
|
prob3 := prob2 - (prob2*0.27061+2.3075)/(prob2*(prob2*0.04481+0.99229)+1)
|
|
|
|
|
|
|
|
if alpha1 > 1 && beta1 > 1 {
|
|
|
|
|
|
|
|
alpha2, beta2, prob2 = 1/(alpha1+alpha1-1), 1/(beta1+beta1-1), (prob3*prob3-3)/6
|
|
|
|
|
|
|
|
x = 2 / (alpha2 + beta2)
|
|
|
|
|
|
|
|
y = prob3*math.Sqrt(x+prob2)/x - (beta2-alpha2)*(prob2+5/6.0-2/(x*3))
|
|
|
|
|
|
|
|
beta3 = alpha1 / (alpha1 + beta1*math.Exp(y+y))
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
beta2, prob2 = 1/(beta1*9), beta1+beta1
|
|
|
|
|
|
|
|
beta2 = prob2 * math.Pow(1-beta2+prob3*math.Sqrt(beta2), 3)
|
|
|
|
|
|
|
|
if beta2 <= 0 {
|
|
|
|
|
|
|
|
beta3 = 1 - math.Exp((math.Log((1-prob1)*beta1)+logbeta)/beta1)
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
beta2 = (prob2 + alpha1*4 - 2) / beta2
|
|
|
|
|
|
|
|
if beta2 <= 1 {
|
|
|
|
|
|
|
|
beta3 = math.Exp((logbeta + math.Log(alpha1*prob1)) / alpha1)
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
beta3 = 1 - 2/(beta2+1)
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
beta2, prob2 = 1-beta1, 1-alpha1
|
|
|
|
|
|
|
|
if beta3 < lowerBound {
|
|
|
|
|
|
|
|
beta3 = lowerBound
|
|
|
|
|
|
|
|
} else if beta3 > upperBound {
|
|
|
|
|
|
|
|
beta3 = upperBound
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
alpha3 := math.Max(minCumulative, math.Pow(10.0, -13.0-2.5/(alpha1*alpha1)-0.5/(prob1*prob1)))
|
|
|
|
|
|
|
|
beta3 = betainvProbIterator(alpha1, alpha3, beta1, beta2, beta3, logbeta, lower, maxCumulative, prob1, prob2, upper, needSwap)
|
|
|
|
|
|
|
|
if needSwap {
|
|
|
|
|
|
|
|
beta3 = 1.0 - beta3
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return (upper-lower)*beta3 + lower
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// FINV function calculates the inverse of the (right-tailed) F Probability
|
|
|
|
|
|
|
|
// Distribution for a supplied probability. The syntax of the function is:
|
|
|
|
|
|
|
|
//
|
|
|
|
|
|
|
|
// FINV(probability,deg_freedom1,deg_freedom2)
|
|
|
|
|
|
|
|
//
|
|
|
|
|
|
|
|
func (fn *formulaFuncs) FINV(argsList *list.List) formulaArg {
|
|
|
|
|
|
|
|
if argsList.Len() != 3 {
|
|
|
|
|
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, "FINV requires 3 arguments")
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
var probability, d1, d2 formulaArg
|
|
|
|
|
|
|
|
if probability = argsList.Front().Value.(formulaArg).ToNumber(); probability.Type != ArgNumber {
|
|
|
|
|
|
|
|
return probability
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if d1 = argsList.Front().Next().Value.(formulaArg).ToNumber(); d1.Type != ArgNumber {
|
|
|
|
|
|
|
|
return d1
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if d2 = argsList.Back().Value.(formulaArg).ToNumber(); d2.Type != ArgNumber {
|
|
|
|
|
|
|
|
return d2
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if probability.Number <= 0 || probability.Number > 1 {
|
|
|
|
|
|
|
|
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if d1.Number < 1 || d1.Number >= math.Pow10(10) {
|
|
|
|
|
|
|
|
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if d2.Number < 1 || d2.Number >= math.Pow10(10) {
|
|
|
|
|
|
|
|
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return newNumberFormulaArg((1/betainv(1.0-(1.0-probability.Number), d2.Number/2, d1.Number/2, 0, 1) - 1.0) * (d2.Number / d1.Number))
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// NORMdotDIST function calculates the Normal Probability Density Function or
|
|
|
|
// NORMdotDIST function calculates the Normal Probability Density Function or
|
|
|
|
// the Cumulative Normal Distribution. Function for a supplied set of
|
|
|
|
// the Cumulative Normal Distribution. Function for a supplied set of
|
|
|
|
// parameters. The syntax of the function is:
|
|
|
|
// parameters. The syntax of the function is:
|
|
|
|