|
|
|
// Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of
|
|
|
|
// this source code is governed by a BSD-style license that can be found in
|
|
|
|
// the LICENSE file.
|
|
|
|
//
|
|
|
|
// Package excelize providing a set of functions that allow you to write to
|
|
|
|
// and read from XLSX / XLSM / XLTM files. Supports reading and writing
|
|
|
|
// spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports
|
|
|
|
// complex components by high compatibility, and provided streaming API for
|
|
|
|
// generating or reading data from a worksheet with huge amounts of data. This
|
|
|
|
// library needs Go version 1.10 or later.
|
|
|
|
|
|
|
|
package excelize
|
|
|
|
|
|
|
|
import (
|
|
|
|
"container/list"
|
|
|
|
"errors"
|
|
|
|
"fmt"
|
|
|
|
"math"
|
|
|
|
"reflect"
|
|
|
|
"strconv"
|
|
|
|
"strings"
|
|
|
|
|
|
|
|
"github.com/xuri/efp"
|
|
|
|
)
|
|
|
|
|
|
|
|
// Excel formula errors
|
|
|
|
const (
|
|
|
|
formulaErrorDIV = "#DIV/0!"
|
|
|
|
formulaErrorNAME = "#NAME?"
|
|
|
|
formulaErrorNA = "#N/A"
|
|
|
|
formulaErrorNUM = "#NUM!"
|
|
|
|
formulaErrorVALUE = "#VALUE!"
|
|
|
|
formulaErrorREF = "#REF!"
|
|
|
|
formulaErrorNULL = "#NULL"
|
|
|
|
formulaErrorSPILL = "#SPILL!"
|
|
|
|
formulaErrorCALC = "#CALC!"
|
|
|
|
formulaErrorGETTINGDATA = "#GETTING_DATA"
|
|
|
|
)
|
|
|
|
|
|
|
|
// cellRef defines the structure of a cell reference
|
|
|
|
type cellRef struct {
|
|
|
|
Col int
|
|
|
|
Row int
|
|
|
|
Sheet string
|
|
|
|
}
|
|
|
|
|
|
|
|
// cellRef defines the structure of a cell range
|
|
|
|
type cellRange struct {
|
|
|
|
From cellRef
|
|
|
|
To cellRef
|
|
|
|
}
|
|
|
|
|
|
|
|
type formulaFuncs struct{}
|
|
|
|
|
|
|
|
// CalcCellValue provides a function to get calculated cell value. This
|
|
|
|
// feature is currently in beta. Array formula, table formula and some other
|
|
|
|
// formulas are not supported currently.
|
|
|
|
func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
|
|
|
|
var (
|
|
|
|
formula string
|
|
|
|
token efp.Token
|
|
|
|
)
|
|
|
|
if formula, err = f.GetCellFormula(sheet, cell); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
ps := efp.ExcelParser()
|
|
|
|
tokens := ps.Parse(formula)
|
|
|
|
if tokens == nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if token, err = f.evalInfixExp(sheet, tokens); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
result = token.TValue
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// getPriority calculate arithmetic operator priority.
|
|
|
|
func getPriority(token efp.Token) (pri int) {
|
|
|
|
var priority = map[string]int{
|
|
|
|
"*": 2,
|
|
|
|
"/": 2,
|
|
|
|
"+": 1,
|
|
|
|
"-": 1,
|
|
|
|
}
|
|
|
|
pri, _ = priority[token.TValue]
|
|
|
|
if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
|
|
|
|
pri = 3
|
|
|
|
}
|
|
|
|
if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // (
|
|
|
|
pri = 0
|
|
|
|
}
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// evalInfixExp evaluate syntax analysis by given infix expression after
|
|
|
|
// lexical analysis. Evaluate an infix expression containing formulas by
|
|
|
|
// stacks:
|
|
|
|
//
|
|
|
|
// opd - Operand
|
|
|
|
// opt - Operator
|
|
|
|
// opf - Operation formula
|
|
|
|
// opfd - Operand of the operation formula
|
|
|
|
// opft - Operator of the operation formula
|
|
|
|
//
|
|
|
|
// Evaluate arguments of the operation formula by list:
|
|
|
|
//
|
|
|
|
// args - Arguments of the operation formula
|
|
|
|
//
|
|
|
|
// TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
|
|
|
|
//
|
|
|
|
func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) {
|
|
|
|
var err error
|
|
|
|
opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
|
|
|
|
argsList := list.New()
|
|
|
|
for i := 0; i < len(tokens); i++ {
|
|
|
|
token := tokens[i]
|
|
|
|
|
|
|
|
// out of function stack
|
|
|
|
if opfStack.Len() == 0 {
|
|
|
|
if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
|
|
|
|
return efp.Token{}, err
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// function start
|
|
|
|
if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart {
|
|
|
|
opfStack.Push(token)
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
|
|
|
|
// in function stack, walk 2 token at once
|
|
|
|
if opfStack.Len() > 0 {
|
|
|
|
var nextToken efp.Token
|
|
|
|
if i+1 < len(tokens) {
|
|
|
|
nextToken = tokens[i+1]
|
|
|
|
}
|
|
|
|
|
|
|
|
// current token is args or range, skip next token, order required: parse reference first
|
|
|
|
if token.TSubType == efp.TokenSubTypeRange {
|
|
|
|
if !opftStack.Empty() {
|
|
|
|
// parse reference: must reference at here
|
|
|
|
result, err := f.parseReference(sheet, token.TValue)
|
|
|
|
if err != nil {
|
|
|
|
return efp.Token{TValue: formulaErrorNAME}, err
|
|
|
|
}
|
|
|
|
if len(result) != 1 {
|
|
|
|
return efp.Token{}, errors.New(formulaErrorVALUE)
|
|
|
|
}
|
|
|
|
opfdStack.Push(efp.Token{
|
|
|
|
TType: efp.TokenTypeOperand,
|
|
|
|
TSubType: efp.TokenSubTypeNumber,
|
|
|
|
TValue: result[0],
|
|
|
|
})
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
|
|
|
|
// parse reference: reference or range at here
|
|
|
|
result, err := f.parseReference(sheet, token.TValue)
|
|
|
|
if err != nil {
|
|
|
|
return efp.Token{TValue: formulaErrorNAME}, err
|
|
|
|
}
|
|
|
|
for _, val := range result {
|
|
|
|
argsList.PushBack(efp.Token{
|
|
|
|
TType: efp.TokenTypeOperand,
|
|
|
|
TSubType: efp.TokenSubTypeNumber,
|
|
|
|
TValue: val,
|
|
|
|
})
|
|
|
|
}
|
|
|
|
if len(result) == 0 {
|
|
|
|
return efp.Token{}, errors.New(formulaErrorVALUE)
|
|
|
|
}
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// check current token is opft
|
|
|
|
if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
|
|
|
|
return efp.Token{}, err
|
|
|
|
}
|
|
|
|
|
|
|
|
// current token is arg
|
|
|
|
if token.TType == efp.TokenTypeArgument {
|
|
|
|
for !opftStack.Empty() {
|
|
|
|
// calculate trigger
|
|
|
|
topOpt := opftStack.Peek().(efp.Token)
|
|
|
|
if err := calculate(opfdStack, topOpt); err != nil {
|
|
|
|
return efp.Token{}, err
|
|
|
|
}
|
|
|
|
opftStack.Pop()
|
|
|
|
}
|
|
|
|
if !opfdStack.Empty() {
|
|
|
|
argsList.PushBack(opfdStack.Pop())
|
|
|
|
}
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
|
|
|
|
// current token is logical
|
|
|
|
if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical {
|
|
|
|
}
|
|
|
|
|
|
|
|
// current token is text
|
|
|
|
if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText {
|
|
|
|
argsList.PushBack(token)
|
|
|
|
}
|
|
|
|
|
|
|
|
// current token is function stop
|
|
|
|
if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop {
|
|
|
|
for !opftStack.Empty() {
|
|
|
|
// calculate trigger
|
|
|
|
topOpt := opftStack.Peek().(efp.Token)
|
|
|
|
if err := calculate(opfdStack, topOpt); err != nil {
|
|
|
|
return efp.Token{}, err
|
|
|
|
}
|
|
|
|
opftStack.Pop()
|
|
|
|
}
|
|
|
|
|
|
|
|
// push opfd to args
|
|
|
|
if opfdStack.Len() > 0 {
|
|
|
|
argsList.PushBack(opfdStack.Pop())
|
|
|
|
}
|
|
|
|
// call formula function to evaluate
|
|
|
|
result, err := callFuncByName(&formulaFuncs{}, strings.ReplaceAll(opfStack.Peek().(efp.Token).TValue, "_xlfn.", ""), []reflect.Value{reflect.ValueOf(argsList)})
|
|
|
|
if err != nil {
|
|
|
|
return efp.Token{}, err
|
|
|
|
}
|
|
|
|
argsList.Init()
|
|
|
|
opfStack.Pop()
|
|
|
|
if opfStack.Len() > 0 { // still in function stack
|
|
|
|
opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
|
} else {
|
|
|
|
opdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for optStack.Len() != 0 {
|
|
|
|
topOpt := optStack.Peek().(efp.Token)
|
|
|
|
if err = calculate(opdStack, topOpt); err != nil {
|
|
|
|
return efp.Token{}, err
|
|
|
|
}
|
|
|
|
optStack.Pop()
|
|
|
|
}
|
|
|
|
return opdStack.Peek().(efp.Token), err
|
|
|
|
}
|
|
|
|
|
|
|
|
// calculate evaluate basic arithmetic operations.
|
|
|
|
func calculate(opdStack *Stack, opt efp.Token) error {
|
|
|
|
if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
|
|
|
|
opd := opdStack.Pop().(efp.Token)
|
|
|
|
opdVal, err := strconv.ParseFloat(opd.TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
result := 0 - opdVal
|
|
|
|
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
|
}
|
|
|
|
if opt.TValue == "+" {
|
|
|
|
rOpd := opdStack.Pop().(efp.Token)
|
|
|
|
lOpd := opdStack.Pop().(efp.Token)
|
|
|
|
lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
result := lOpdVal + rOpdVal
|
|
|
|
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
|
}
|
|
|
|
if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
|
|
|
|
rOpd := opdStack.Pop().(efp.Token)
|
|
|
|
lOpd := opdStack.Pop().(efp.Token)
|
|
|
|
lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
result := lOpdVal - rOpdVal
|
|
|
|
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
|
}
|
|
|
|
if opt.TValue == "*" {
|
|
|
|
rOpd := opdStack.Pop().(efp.Token)
|
|
|
|
lOpd := opdStack.Pop().(efp.Token)
|
|
|
|
lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
result := lOpdVal * rOpdVal
|
|
|
|
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
|
}
|
|
|
|
if opt.TValue == "/" {
|
|
|
|
rOpd := opdStack.Pop().(efp.Token)
|
|
|
|
lOpd := opdStack.Pop().(efp.Token)
|
|
|
|
lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
result := lOpdVal / rOpdVal
|
|
|
|
if rOpdVal == 0 {
|
|
|
|
return errors.New(formulaErrorDIV)
|
|
|
|
}
|
|
|
|
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
|
|
|
|
}
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// parseToken parse basic arithmetic operator priority and evaluate based on
|
|
|
|
// operators and operands.
|
|
|
|
func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
|
|
|
|
// parse reference: must reference at here
|
|
|
|
if token.TSubType == efp.TokenSubTypeRange {
|
|
|
|
result, err := f.parseReference(sheet, token.TValue)
|
|
|
|
if err != nil {
|
|
|
|
return errors.New(formulaErrorNAME)
|
|
|
|
}
|
|
|
|
if len(result) != 1 {
|
|
|
|
return errors.New(formulaErrorVALUE)
|
|
|
|
}
|
|
|
|
token.TValue = result[0]
|
|
|
|
token.TType = efp.TokenTypeOperand
|
|
|
|
token.TSubType = efp.TokenSubTypeNumber
|
|
|
|
}
|
|
|
|
if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || token.TValue == "+" || token.TValue == "-" || token.TValue == "*" || token.TValue == "/" {
|
|
|
|
if optStack.Len() == 0 {
|
|
|
|
optStack.Push(token)
|
|
|
|
} else {
|
|
|
|
tokenPriority := getPriority(token)
|
|
|
|
topOpt := optStack.Peek().(efp.Token)
|
|
|
|
topOptPriority := getPriority(topOpt)
|
|
|
|
if tokenPriority > topOptPriority {
|
|
|
|
optStack.Push(token)
|
|
|
|
} else {
|
|
|
|
for tokenPriority <= topOptPriority {
|
|
|
|
optStack.Pop()
|
|
|
|
if err := calculate(opdStack, topOpt); err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
if optStack.Len() > 0 {
|
|
|
|
topOpt = optStack.Peek().(efp.Token)
|
|
|
|
topOptPriority = getPriority(topOpt)
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
break
|
|
|
|
}
|
|
|
|
optStack.Push(token)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // (
|
|
|
|
optStack.Push(token)
|
|
|
|
}
|
|
|
|
if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // )
|
|
|
|
for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != (
|
|
|
|
topOpt := optStack.Peek().(efp.Token)
|
|
|
|
if err := calculate(opdStack, topOpt); err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
optStack.Pop()
|
|
|
|
}
|
|
|
|
optStack.Pop()
|
|
|
|
}
|
|
|
|
// opd
|
|
|
|
if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber {
|
|
|
|
opdStack.Push(token)
|
|
|
|
}
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// parseReference parse reference and extract values by given reference
|
|
|
|
// characters and default sheet name.
|
|
|
|
func (f *File) parseReference(sheet, reference string) (result []string, err error) {
|
|
|
|
reference = strings.Replace(reference, "$", "", -1)
|
|
|
|
refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
|
|
|
|
for _, ref := range strings.Split(reference, ":") {
|
|
|
|
tokens := strings.Split(ref, "!")
|
|
|
|
cr := cellRef{}
|
|
|
|
if len(tokens) == 2 { // have a worksheet name
|
|
|
|
cr.Sheet = tokens[0]
|
|
|
|
if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if refs.Len() > 0 {
|
|
|
|
e := refs.Back()
|
|
|
|
cellRefs.PushBack(e.Value.(cellRef))
|
|
|
|
refs.Remove(e)
|
|
|
|
}
|
|
|
|
refs.PushBack(cr)
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
e := refs.Back()
|
|
|
|
if e == nil {
|
|
|
|
cr.Sheet = sheet
|
|
|
|
refs.PushBack(cr)
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
cellRanges.PushBack(cellRange{
|
|
|
|
From: e.Value.(cellRef),
|
|
|
|
To: cr,
|
|
|
|
})
|
|
|
|
refs.Remove(e)
|
|
|
|
}
|
|
|
|
if refs.Len() > 0 {
|
|
|
|
e := refs.Back()
|
|
|
|
cellRefs.PushBack(e.Value.(cellRef))
|
|
|
|
refs.Remove(e)
|
|
|
|
}
|
|
|
|
|
|
|
|
result, err = f.rangeResolver(cellRefs, cellRanges)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// rangeResolver extract value as string from given reference and range list.
|
|
|
|
// This function will not ignore the empty cell. Note that the result of 3D
|
|
|
|
// range references may be different from Excel in some cases, for example,
|
|
|
|
// A1:A2:A2:B3 in Excel will include B1, but we wont.
|
|
|
|
func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (result []string, err error) {
|
|
|
|
filter := map[string]string{}
|
|
|
|
// extract value from ranges
|
|
|
|
for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
|
|
|
|
cr := temp.Value.(cellRange)
|
|
|
|
if cr.From.Sheet != cr.To.Sheet {
|
|
|
|
err = errors.New(formulaErrorVALUE)
|
|
|
|
}
|
|
|
|
rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
|
|
|
|
sortCoordinates(rng)
|
|
|
|
for col := rng[0]; col <= rng[2]; col++ {
|
|
|
|
for row := rng[1]; row <= rng[3]; row++ {
|
|
|
|
var cell string
|
|
|
|
if cell, err = CoordinatesToCellName(col, row); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if filter[cell], err = f.GetCellValue(cr.From.Sheet, cell); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// extract value from references
|
|
|
|
for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
|
|
|
|
cr := temp.Value.(cellRef)
|
|
|
|
var cell string
|
|
|
|
if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if filter[cell], err = f.GetCellValue(cr.Sheet, cell); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for _, val := range filter {
|
|
|
|
result = append(result, val)
|
|
|
|
}
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// callFuncByName calls the no error or only error return function with
|
|
|
|
// reflect by given receiver, name and parameters.
|
|
|
|
func callFuncByName(receiver interface{}, name string, params []reflect.Value) (result string, err error) {
|
|
|
|
function := reflect.ValueOf(receiver).MethodByName(name)
|
|
|
|
if function.IsValid() {
|
|
|
|
rt := function.Call(params)
|
|
|
|
if len(rt) == 0 {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if !rt[1].IsNil() {
|
|
|
|
err = rt[1].Interface().(error)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
result = rt[0].Interface().(string)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
err = fmt.Errorf("not support %s function", name)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// Math and Trigonometric functions
|
|
|
|
|
|
|
|
// ABS function returns the absolute value of any supplied number. The syntax
|
|
|
|
// of the function is:
|
|
|
|
//
|
|
|
|
// ABS(number)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) ABS(argsList *list.List) (result string, err error) {
|
|
|
|
if argsList.Len() != 1 {
|
|
|
|
err = errors.New("ABS requires 1 numeric arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var val float64
|
|
|
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
result = fmt.Sprintf("%g", math.Abs(val))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
|
|
|
|
// number, and returns an angle, in radians, between 0 and π. The syntax of
|
|
|
|
// the function is:
|
|
|
|
//
|
|
|
|
// ACOS(number)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) ACOS(argsList *list.List) (result string, err error) {
|
|
|
|
if argsList.Len() != 1 {
|
|
|
|
err = errors.New("ACOS requires 1 numeric arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var val float64
|
|
|
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
result = fmt.Sprintf("%g", math.Acos(val))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
|
|
|
|
// of the function is:
|
|
|
|
//
|
|
|
|
// ACOSH(number)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) ACOSH(argsList *list.List) (result string, err error) {
|
|
|
|
if argsList.Len() != 1 {
|
|
|
|
err = errors.New("ACOSH requires 1 numeric arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var val float64
|
|
|
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
result = fmt.Sprintf("%g", math.Acosh(val))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
|
|
|
|
// given number, and returns an angle, in radians, between 0 and π. The syntax
|
|
|
|
// of the function is:
|
|
|
|
//
|
|
|
|
// ACOT(number)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) ACOT(argsList *list.List) (result string, err error) {
|
|
|
|
if argsList.Len() != 1 {
|
|
|
|
err = errors.New("ACOT requires 1 numeric arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var val float64
|
|
|
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
result = fmt.Sprintf("%g", math.Pi/2-math.Atan(val))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
|
|
|
|
// value. The syntax of the function is:
|
|
|
|
//
|
|
|
|
// ACOTH(number)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) ACOTH(argsList *list.List) (result string, err error) {
|
|
|
|
if argsList.Len() != 1 {
|
|
|
|
err = errors.New("ACOTH requires 1 numeric arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var val float64
|
|
|
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
result = fmt.Sprintf("%g", math.Atanh(1/val))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
|
|
|
|
// of the function is:
|
|
|
|
//
|
|
|
|
// ARABIC(text)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) ARABIC(argsList *list.List) (result string, err error) {
|
|
|
|
if argsList.Len() != 1 {
|
|
|
|
err = errors.New("ARABIC requires 1 numeric arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
val, last, prefix := 0.0, 0.0, 1.0
|
|
|
|
for _, char := range argsList.Front().Value.(efp.Token).TValue {
|
|
|
|
digit := 0.0
|
|
|
|
switch char {
|
|
|
|
case '-':
|
|
|
|
prefix = -1
|
|
|
|
continue
|
|
|
|
case 'I':
|
|
|
|
digit = 1
|
|
|
|
case 'V':
|
|
|
|
digit = 5
|
|
|
|
case 'X':
|
|
|
|
digit = 10
|
|
|
|
case 'L':
|
|
|
|
digit = 50
|
|
|
|
case 'C':
|
|
|
|
digit = 100
|
|
|
|
case 'D':
|
|
|
|
digit = 500
|
|
|
|
case 'M':
|
|
|
|
digit = 1000
|
|
|
|
}
|
|
|
|
val += digit
|
|
|
|
switch {
|
|
|
|
case last == digit && (last == 5 || last == 50 || last == 500):
|
|
|
|
result = formulaErrorVALUE
|
|
|
|
return
|
|
|
|
case 2*last == digit:
|
|
|
|
result = formulaErrorVALUE
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if last < digit {
|
|
|
|
val -= 2 * last
|
|
|
|
}
|
|
|
|
last = digit
|
|
|
|
}
|
|
|
|
result = fmt.Sprintf("%g", prefix*val)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// ASIN function calculates the arcsine (i.e. the inverse sine) of a given
|
|
|
|
// number, and returns an angle, in radians, between -π/2 and π/2. The syntax
|
|
|
|
// of the function is:
|
|
|
|
//
|
|
|
|
// ASIN(number)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) ASIN(argsList *list.List) (result string, err error) {
|
|
|
|
if argsList.Len() != 1 {
|
|
|
|
err = errors.New("ASIN requires 1 numeric arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var val float64
|
|
|
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
result = fmt.Sprintf("%g", math.Asin(val))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// ASINH function calculates the inverse hyperbolic sine of a supplied number.
|
|
|
|
// The syntax of the function is:
|
|
|
|
//
|
|
|
|
// ASINH(number)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) ASINH(argsList *list.List) (result string, err error) {
|
|
|
|
if argsList.Len() != 1 {
|
|
|
|
err = errors.New("ASINH requires 1 numeric arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var val float64
|
|
|
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
result = fmt.Sprintf("%g", math.Asinh(val))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// ATAN function calculates the arctangent (i.e. the inverse tangent) of a
|
|
|
|
// given number, and returns an angle, in radians, between -π/2 and +π/2. The
|
|
|
|
// syntax of the function is:
|
|
|
|
//
|
|
|
|
// ATAN(number)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) ATAN(argsList *list.List) (result string, err error) {
|
|
|
|
if argsList.Len() != 1 {
|
|
|
|
err = errors.New("ATAN requires 1 numeric arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var val float64
|
|
|
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
result = fmt.Sprintf("%g", math.Atan(val))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// ATANH function calculates the inverse hyperbolic tangent of a supplied
|
|
|
|
// number. The syntax of the function is:
|
|
|
|
//
|
|
|
|
// ATANH(number)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) ATANH(argsList *list.List) (result string, err error) {
|
|
|
|
if argsList.Len() != 1 {
|
|
|
|
err = errors.New("ATANH requires 1 numeric arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var val float64
|
|
|
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
result = fmt.Sprintf("%g", math.Atanh(val))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
|
|
|
|
// given set of x and y coordinates, and returns an angle, in radians, between
|
|
|
|
// -π/2 and +π/2. The syntax of the function is:
|
|
|
|
//
|
|
|
|
// ATAN2(x_num,y_num)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) ATAN2(argsList *list.List) (result string, err error) {
|
|
|
|
if argsList.Len() != 2 {
|
|
|
|
err = errors.New("ATAN2 requires 2 numeric arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var x, y float64
|
|
|
|
x, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
y, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
result = fmt.Sprintf("%g", math.Atan2(x, y))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// gcd returns the greatest common divisor of two supplied integers.
|
|
|
|
func gcd(x, y float64) float64 {
|
|
|
|
x, y = math.Trunc(x), math.Trunc(y)
|
|
|
|
if x == 0 {
|
|
|
|
return y
|
|
|
|
}
|
|
|
|
if y == 0 {
|
|
|
|
return x
|
|
|
|
}
|
|
|
|
for x != y {
|
|
|
|
if x > y {
|
|
|
|
x = x - y
|
|
|
|
} else {
|
|
|
|
y = y - x
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return x
|
|
|
|
}
|
|
|
|
|
|
|
|
// BASE function converts a number into a supplied base (radix), and returns a
|
|
|
|
// text representation of the calculated value. The syntax of the function is:
|
|
|
|
//
|
|
|
|
// BASE(number,radix,[min_length])
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) BASE(argsList *list.List) (result string, err error) {
|
|
|
|
if argsList.Len() < 2 {
|
|
|
|
err = errors.New("BASE requires at least 2 arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if argsList.Len() > 3 {
|
|
|
|
err = errors.New("BASE allows at most 3 arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var number float64
|
|
|
|
var radix, minLength int
|
|
|
|
number, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
radix, err = strconv.Atoi(argsList.Front().Next().Value.(efp.Token).TValue)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if radix < 2 || radix > 36 {
|
|
|
|
err = errors.New("radix must be an integer ≥ 2 and ≤ 36")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if argsList.Len() > 2 {
|
|
|
|
minLength, err = strconv.Atoi(argsList.Back().Value.(efp.Token).TValue)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
}
|
|
|
|
result = strconv.FormatInt(int64(number), radix)
|
|
|
|
if len(result) < minLength {
|
|
|
|
result = strings.Repeat("0", minLength-len(result)) + result
|
|
|
|
}
|
|
|
|
result = strings.ToUpper(result)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// GCD function returns the greatest common divisor of two or more supplied
|
|
|
|
// integers. The syntax of the function is:
|
|
|
|
//
|
|
|
|
// GCD(number1,[number2],...)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) GCD(argsList *list.List) (result string, err error) {
|
|
|
|
if argsList.Len() == 0 {
|
|
|
|
err = errors.New("GCD requires at least 1 argument")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var (
|
|
|
|
val float64
|
|
|
|
nums = []float64{}
|
|
|
|
)
|
|
|
|
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
|
token := arg.Value.(efp.Token)
|
|
|
|
if token.TValue == "" {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
val, err = strconv.ParseFloat(token.TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
nums = append(nums, val)
|
|
|
|
}
|
|
|
|
if nums[0] < 0 {
|
|
|
|
err = errors.New("GCD only accepts positive arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if len(nums) == 1 {
|
|
|
|
result = fmt.Sprintf("%g", nums[0])
|
|
|
|
return
|
|
|
|
}
|
|
|
|
cd := nums[0]
|
|
|
|
for i := 1; i < len(nums); i++ {
|
|
|
|
if nums[i] < 0 {
|
|
|
|
err = errors.New("GCD only accepts positive arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
cd = gcd(cd, nums[i])
|
|
|
|
}
|
|
|
|
result = fmt.Sprintf("%g", cd)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// lcm returns the least common multiple of two supplied integers.
|
|
|
|
func lcm(a, b float64) float64 {
|
|
|
|
a = math.Trunc(a)
|
|
|
|
b = math.Trunc(b)
|
|
|
|
if a == 0 && b == 0 {
|
|
|
|
return 0
|
|
|
|
}
|
|
|
|
return a * b / gcd(a, b)
|
|
|
|
}
|
|
|
|
|
|
|
|
// LCM function returns the least common multiple of two or more supplied
|
|
|
|
// integers. The syntax of the function is:
|
|
|
|
//
|
|
|
|
// LCM(number1,[number2],...)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) LCM(argsList *list.List) (result string, err error) {
|
|
|
|
if argsList.Len() == 0 {
|
|
|
|
err = errors.New("LCM requires at least 1 argument")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var (
|
|
|
|
val float64
|
|
|
|
nums = []float64{}
|
|
|
|
)
|
|
|
|
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
|
token := arg.Value.(efp.Token)
|
|
|
|
if token.TValue == "" {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
val, err = strconv.ParseFloat(token.TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
nums = append(nums, val)
|
|
|
|
}
|
|
|
|
if nums[0] < 0 {
|
|
|
|
err = errors.New("LCM only accepts positive arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if len(nums) == 1 {
|
|
|
|
result = fmt.Sprintf("%g", nums[0])
|
|
|
|
return
|
|
|
|
}
|
|
|
|
cm := nums[0]
|
|
|
|
for i := 1; i < len(nums); i++ {
|
|
|
|
if nums[i] < 0 {
|
|
|
|
err = errors.New("LCM only accepts positive arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
cm = lcm(cm, nums[i])
|
|
|
|
}
|
|
|
|
result = fmt.Sprintf("%g", cm)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// POWER function calculates a given number, raised to a supplied power.
|
|
|
|
// The syntax of the function is:
|
|
|
|
//
|
|
|
|
// POWER(number,power)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) POWER(argsList *list.List) (result string, err error) {
|
|
|
|
if argsList.Len() != 2 {
|
|
|
|
err = errors.New("POWER requires 2 numeric arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var x, y float64
|
|
|
|
x, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
y, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if x == 0 && y == 0 {
|
|
|
|
err = errors.New(formulaErrorNUM)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if x == 0 && y < 0 {
|
|
|
|
err = errors.New(formulaErrorDIV)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
result = fmt.Sprintf("%g", math.Pow(x, y))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// PRODUCT function returns the product (multiplication) of a supplied set of
|
|
|
|
// numerical values. The syntax of the function is:
|
|
|
|
//
|
|
|
|
// PRODUCT(number1,[number2],...)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) {
|
|
|
|
var (
|
|
|
|
val float64
|
|
|
|
product float64 = 1
|
|
|
|
)
|
|
|
|
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
|
token := arg.Value.(efp.Token)
|
|
|
|
if token.TValue == "" {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
val, err = strconv.ParseFloat(token.TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
product = product * val
|
|
|
|
}
|
|
|
|
result = fmt.Sprintf("%g", product)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
|
|
|
|
// number. I.e. if the number is positive, the Sign function returns +1, if
|
|
|
|
// the number is negative, the function returns -1 and if the number is 0
|
|
|
|
// (zero), the function returns 0. The syntax of the function is:
|
|
|
|
//
|
|
|
|
// SIGN(number)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) SIGN(argsList *list.List) (result string, err error) {
|
|
|
|
if argsList.Len() != 1 {
|
|
|
|
err = errors.New("SIGN requires 1 numeric arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var val float64
|
|
|
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if val < 0 {
|
|
|
|
result = "-1"
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if val > 0 {
|
|
|
|
result = "1"
|
|
|
|
return
|
|
|
|
}
|
|
|
|
result = "0"
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// SQRT function calculates the positive square root of a supplied number. The
|
|
|
|
// syntax of the function is:
|
|
|
|
//
|
|
|
|
// SQRT(number)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) SQRT(argsList *list.List) (result string, err error) {
|
|
|
|
if argsList.Len() != 1 {
|
|
|
|
err = errors.New("SQRT requires 1 numeric arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var val float64
|
|
|
|
val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if val < 0 {
|
|
|
|
err = errors.New(formulaErrorNUM)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
result = fmt.Sprintf("%g", math.Sqrt(val))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// SUM function adds together a supplied set of numbers and returns the sum of
|
|
|
|
// these values. The syntax of the function is:
|
|
|
|
//
|
|
|
|
// SUM(number1,[number2],...)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) {
|
|
|
|
var val float64
|
|
|
|
var sum float64
|
|
|
|
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
|
|
|
|
token := arg.Value.(efp.Token)
|
|
|
|
if token.TValue == "" {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
val, err = strconv.ParseFloat(token.TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
sum += val
|
|
|
|
}
|
|
|
|
result = fmt.Sprintf("%g", sum)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// QUOTIENT function returns the integer portion of a division between two
|
|
|
|
// supplied numbers. The syntax of the function is:
|
|
|
|
//
|
|
|
|
// QUOTIENT(numerator,denominator)
|
|
|
|
//
|
|
|
|
func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) {
|
|
|
|
if argsList.Len() != 2 {
|
|
|
|
err = errors.New("QUOTIENT requires 2 numeric arguments")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
var x, y float64
|
|
|
|
x, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
y, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64)
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if y == 0 {
|
|
|
|
err = errors.New(formulaErrorDIV)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
result = fmt.Sprintf("%g", math.Trunc(x/y))
|
|
|
|
return
|
|
|
|
}
|