// Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of // this source code is governed by a BSD-style license that can be found in // the LICENSE file. // // Package excelize providing a set of functions that allow you to write to // and read from XLSX / XLSM / XLTM files. Supports reading and writing // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports // complex components by high compatibility, and provided streaming API for // generating or reading data from a worksheet with huge amounts of data. This // library needs Go version 1.10 or later. package excelize import ( "container/list" "errors" "fmt" "math" "reflect" "strconv" "strings" "github.com/xuri/efp" ) // Excel formula errors const ( formulaErrorDIV = "#DIV/0!" formulaErrorNAME = "#NAME?" formulaErrorNA = "#N/A" formulaErrorNUM = "#NUM!" formulaErrorVALUE = "#VALUE!" formulaErrorREF = "#REF!" formulaErrorNULL = "#NULL" formulaErrorSPILL = "#SPILL!" formulaErrorCALC = "#CALC!" formulaErrorGETTINGDATA = "#GETTING_DATA" ) // cellRef defines the structure of a cell reference type cellRef struct { Col int Row int Sheet string } // cellRef defines the structure of a cell range type cellRange struct { From cellRef To cellRef } type formulaFuncs struct{} // CalcCellValue provides a function to get calculated cell value. This // feature is currently in beta. Array formula, table formula and some other // formulas are not supported currently. func (f *File) CalcCellValue(sheet, cell string) (result string, err error) { var ( formula string token efp.Token ) if formula, err = f.GetCellFormula(sheet, cell); err != nil { return } ps := efp.ExcelParser() tokens := ps.Parse(formula) if tokens == nil { return } if token, err = f.evalInfixExp(sheet, tokens); err != nil { return } result = token.TValue return } // getPriority calculate arithmetic operator priority. func getPriority(token efp.Token) (pri int) { var priority = map[string]int{ "*": 2, "/": 2, "+": 1, "-": 1, } pri, _ = priority[token.TValue] if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix { pri = 3 } if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // ( pri = 0 } return } // evalInfixExp evaluate syntax analysis by given infix expression after // lexical analysis. Evaluate an infix expression containing formulas by // stacks: // // opd - Operand // opt - Operator // opf - Operation formula // opfd - Operand of the operation formula // opft - Operator of the operation formula // // Evaluate arguments of the operation formula by list: // // args - Arguments of the operation formula // // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union // func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) { var err error opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack() argsList := list.New() for i := 0; i < len(tokens); i++ { token := tokens[i] // out of function stack if opfStack.Len() == 0 { if err = f.parseToken(sheet, token, opdStack, optStack); err != nil { return efp.Token{}, err } } // function start if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart { opfStack.Push(token) continue } // in function stack, walk 2 token at once if opfStack.Len() > 0 { var nextToken efp.Token if i+1 < len(tokens) { nextToken = tokens[i+1] } // current token is args or range, skip next token, order required: parse reference first if token.TSubType == efp.TokenSubTypeRange { if !opftStack.Empty() { // parse reference: must reference at here result, err := f.parseReference(sheet, token.TValue) if err != nil { return efp.Token{TValue: formulaErrorNAME}, err } if len(result) != 1 { return efp.Token{}, errors.New(formulaErrorVALUE) } opfdStack.Push(efp.Token{ TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber, TValue: result[0], }) continue } if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction { // parse reference: reference or range at here result, err := f.parseReference(sheet, token.TValue) if err != nil { return efp.Token{TValue: formulaErrorNAME}, err } for _, val := range result { argsList.PushBack(efp.Token{ TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber, TValue: val, }) } if len(result) == 0 { return efp.Token{}, errors.New(formulaErrorVALUE) } continue } } // check current token is opft if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil { return efp.Token{}, err } // current token is arg if token.TType == efp.TokenTypeArgument { for !opftStack.Empty() { // calculate trigger topOpt := opftStack.Peek().(efp.Token) if err := calculate(opfdStack, topOpt); err != nil { return efp.Token{}, err } opftStack.Pop() } if !opfdStack.Empty() { argsList.PushBack(opfdStack.Pop()) } continue } // current token is logical if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical { } // current token is text if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText { argsList.PushBack(token) } // current token is function stop if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop { for !opftStack.Empty() { // calculate trigger topOpt := opftStack.Peek().(efp.Token) if err := calculate(opfdStack, topOpt); err != nil { return efp.Token{}, err } opftStack.Pop() } // push opfd to args if opfdStack.Len() > 0 { argsList.PushBack(opfdStack.Pop()) } // call formula function to evaluate result, err := callFuncByName(&formulaFuncs{}, strings.ReplaceAll(opfStack.Peek().(efp.Token).TValue, "_xlfn.", ""), []reflect.Value{reflect.ValueOf(argsList)}) if err != nil { return efp.Token{}, err } argsList.Init() opfStack.Pop() if opfStack.Len() > 0 { // still in function stack opfdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) } else { opdStack.Push(efp.Token{TValue: result, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) } } } } for optStack.Len() != 0 { topOpt := optStack.Peek().(efp.Token) if err = calculate(opdStack, topOpt); err != nil { return efp.Token{}, err } optStack.Pop() } return opdStack.Peek().(efp.Token), err } // calculate evaluate basic arithmetic operations. func calculate(opdStack *Stack, opt efp.Token) error { if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix { opd := opdStack.Pop().(efp.Token) opdVal, err := strconv.ParseFloat(opd.TValue, 64) if err != nil { return err } result := 0 - opdVal opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) } if opt.TValue == "+" { rOpd := opdStack.Pop().(efp.Token) lOpd := opdStack.Pop().(efp.Token) lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64) if err != nil { return err } result := lOpdVal + rOpdVal opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) } if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix { rOpd := opdStack.Pop().(efp.Token) lOpd := opdStack.Pop().(efp.Token) lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64) if err != nil { return err } result := lOpdVal - rOpdVal opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) } if opt.TValue == "*" { rOpd := opdStack.Pop().(efp.Token) lOpd := opdStack.Pop().(efp.Token) lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64) if err != nil { return err } result := lOpdVal * rOpdVal opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) } if opt.TValue == "/" { rOpd := opdStack.Pop().(efp.Token) lOpd := opdStack.Pop().(efp.Token) lOpdVal, err := strconv.ParseFloat(lOpd.TValue, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd.TValue, 64) if err != nil { return err } result := lOpdVal / rOpdVal if rOpdVal == 0 { return errors.New(formulaErrorDIV) } opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) } return nil } // parseToken parse basic arithmetic operator priority and evaluate based on // operators and operands. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error { // parse reference: must reference at here if token.TSubType == efp.TokenSubTypeRange { result, err := f.parseReference(sheet, token.TValue) if err != nil { return errors.New(formulaErrorNAME) } if len(result) != 1 { return errors.New(formulaErrorVALUE) } token.TValue = result[0] token.TType = efp.TokenTypeOperand token.TSubType = efp.TokenSubTypeNumber } if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || token.TValue == "+" || token.TValue == "-" || token.TValue == "*" || token.TValue == "/" { if optStack.Len() == 0 { optStack.Push(token) } else { tokenPriority := getPriority(token) topOpt := optStack.Peek().(efp.Token) topOptPriority := getPriority(topOpt) if tokenPriority > topOptPriority { optStack.Push(token) } else { for tokenPriority <= topOptPriority { optStack.Pop() if err := calculate(opdStack, topOpt); err != nil { return err } if optStack.Len() > 0 { topOpt = optStack.Peek().(efp.Token) topOptPriority = getPriority(topOpt) continue } break } optStack.Push(token) } } } if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // ( optStack.Push(token) } if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // ) for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != ( topOpt := optStack.Peek().(efp.Token) if err := calculate(opdStack, topOpt); err != nil { return err } optStack.Pop() } optStack.Pop() } // opd if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber { opdStack.Push(token) } return nil } // parseReference parse reference and extract values by given reference // characters and default sheet name. func (f *File) parseReference(sheet, reference string) (result []string, err error) { reference = strings.Replace(reference, "$", "", -1) refs, cellRanges, cellRefs := list.New(), list.New(), list.New() for _, ref := range strings.Split(reference, ":") { tokens := strings.Split(ref, "!") cr := cellRef{} if len(tokens) == 2 { // have a worksheet name cr.Sheet = tokens[0] if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil { return } if refs.Len() > 0 { e := refs.Back() cellRefs.PushBack(e.Value.(cellRef)) refs.Remove(e) } refs.PushBack(cr) continue } if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil { return } e := refs.Back() if e == nil { cr.Sheet = sheet refs.PushBack(cr) continue } cellRanges.PushBack(cellRange{ From: e.Value.(cellRef), To: cr, }) refs.Remove(e) } if refs.Len() > 0 { e := refs.Back() cellRefs.PushBack(e.Value.(cellRef)) refs.Remove(e) } result, err = f.rangeResolver(cellRefs, cellRanges) return } // rangeResolver extract value as string from given reference and range list. // This function will not ignore the empty cell. Note that the result of 3D // range references may be different from Excel in some cases, for example, // A1:A2:A2:B3 in Excel will include B1, but we wont. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (result []string, err error) { filter := map[string]string{} // extract value from ranges for temp := cellRanges.Front(); temp != nil; temp = temp.Next() { cr := temp.Value.(cellRange) if cr.From.Sheet != cr.To.Sheet { err = errors.New(formulaErrorVALUE) } rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row} sortCoordinates(rng) for col := rng[0]; col <= rng[2]; col++ { for row := rng[1]; row <= rng[3]; row++ { var cell string if cell, err = CoordinatesToCellName(col, row); err != nil { return } if filter[cell], err = f.GetCellValue(cr.From.Sheet, cell); err != nil { return } } } } // extract value from references for temp := cellRefs.Front(); temp != nil; temp = temp.Next() { cr := temp.Value.(cellRef) var cell string if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil { return } if filter[cell], err = f.GetCellValue(cr.Sheet, cell); err != nil { return } } for _, val := range filter { result = append(result, val) } return } // callFuncByName calls the no error or only error return function with // reflect by given receiver, name and parameters. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (result string, err error) { function := reflect.ValueOf(receiver).MethodByName(name) if function.IsValid() { rt := function.Call(params) if len(rt) == 0 { return } if !rt[1].IsNil() { err = rt[1].Interface().(error) return } result = rt[0].Interface().(string) return } err = fmt.Errorf("not support %s function", name) return } // Math and Trigonometric functions // ABS function returns the absolute value of any supplied number. The syntax // of the function is: // // ABS(number) // func (fn *formulaFuncs) ABS(argsList *list.List) (result string, err error) { if argsList.Len() != 1 { err = errors.New("ABS requires 1 numeric arguments") return } var val float64 val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } result = fmt.Sprintf("%g", math.Abs(val)) return } // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given // number, and returns an angle, in radians, between 0 and π. The syntax of // the function is: // // ACOS(number) // func (fn *formulaFuncs) ACOS(argsList *list.List) (result string, err error) { if argsList.Len() != 1 { err = errors.New("ACOS requires 1 numeric arguments") return } var val float64 val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } result = fmt.Sprintf("%g", math.Acos(val)) return } // ACOSH function calculates the inverse hyperbolic cosine of a supplied number. // of the function is: // // ACOSH(number) // func (fn *formulaFuncs) ACOSH(argsList *list.List) (result string, err error) { if argsList.Len() != 1 { err = errors.New("ACOSH requires 1 numeric arguments") return } var val float64 val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } result = fmt.Sprintf("%g", math.Acosh(val)) return } // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a // given number, and returns an angle, in radians, between 0 and π. The syntax // of the function is: // // ACOT(number) // func (fn *formulaFuncs) ACOT(argsList *list.List) (result string, err error) { if argsList.Len() != 1 { err = errors.New("ACOT requires 1 numeric arguments") return } var val float64 val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } result = fmt.Sprintf("%g", math.Pi/2-math.Atan(val)) return } // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied // value. The syntax of the function is: // // ACOTH(number) // func (fn *formulaFuncs) ACOTH(argsList *list.List) (result string, err error) { if argsList.Len() != 1 { err = errors.New("ACOTH requires 1 numeric arguments") return } var val float64 val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } result = fmt.Sprintf("%g", math.Atanh(1/val)) return } // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax // of the function is: // // ARABIC(text) // func (fn *formulaFuncs) ARABIC(argsList *list.List) (result string, err error) { if argsList.Len() != 1 { err = errors.New("ARABIC requires 1 numeric arguments") return } val, last, prefix := 0.0, 0.0, 1.0 for _, char := range argsList.Front().Value.(efp.Token).TValue { digit := 0.0 switch char { case '-': prefix = -1 continue case 'I': digit = 1 case 'V': digit = 5 case 'X': digit = 10 case 'L': digit = 50 case 'C': digit = 100 case 'D': digit = 500 case 'M': digit = 1000 } val += digit switch { case last == digit && (last == 5 || last == 50 || last == 500): result = formulaErrorVALUE return case 2*last == digit: result = formulaErrorVALUE return } if last < digit { val -= 2 * last } last = digit } result = fmt.Sprintf("%g", prefix*val) return } // ASIN function calculates the arcsine (i.e. the inverse sine) of a given // number, and returns an angle, in radians, between -π/2 and π/2. The syntax // of the function is: // // ASIN(number) // func (fn *formulaFuncs) ASIN(argsList *list.List) (result string, err error) { if argsList.Len() != 1 { err = errors.New("ASIN requires 1 numeric arguments") return } var val float64 val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } result = fmt.Sprintf("%g", math.Asin(val)) return } // ASINH function calculates the inverse hyperbolic sine of a supplied number. // The syntax of the function is: // // ASINH(number) // func (fn *formulaFuncs) ASINH(argsList *list.List) (result string, err error) { if argsList.Len() != 1 { err = errors.New("ASINH requires 1 numeric arguments") return } var val float64 val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } result = fmt.Sprintf("%g", math.Asinh(val)) return } // ATAN function calculates the arctangent (i.e. the inverse tangent) of a // given number, and returns an angle, in radians, between -π/2 and +π/2. The // syntax of the function is: // // ATAN(number) // func (fn *formulaFuncs) ATAN(argsList *list.List) (result string, err error) { if argsList.Len() != 1 { err = errors.New("ATAN requires 1 numeric arguments") return } var val float64 val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } result = fmt.Sprintf("%g", math.Atan(val)) return } // ATANH function calculates the inverse hyperbolic tangent of a supplied // number. The syntax of the function is: // // ATANH(number) // func (fn *formulaFuncs) ATANH(argsList *list.List) (result string, err error) { if argsList.Len() != 1 { err = errors.New("ATANH requires 1 numeric arguments") return } var val float64 val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } result = fmt.Sprintf("%g", math.Atanh(val)) return } // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a // given set of x and y coordinates, and returns an angle, in radians, between // -π/2 and +π/2. The syntax of the function is: // // ATAN2(x_num,y_num) // func (fn *formulaFuncs) ATAN2(argsList *list.List) (result string, err error) { if argsList.Len() != 2 { err = errors.New("ATAN2 requires 2 numeric arguments") return } var x, y float64 x, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64) if err != nil { return } y, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } result = fmt.Sprintf("%g", math.Atan2(x, y)) return } // gcd returns the greatest common divisor of two supplied integers. func gcd(x, y float64) float64 { x, y = math.Trunc(x), math.Trunc(y) if x == 0 { return y } if y == 0 { return x } for x != y { if x > y { x = x - y } else { y = y - x } } return x } // BASE function converts a number into a supplied base (radix), and returns a // text representation of the calculated value. The syntax of the function is: // // BASE(number,radix,[min_length]) // func (fn *formulaFuncs) BASE(argsList *list.List) (result string, err error) { if argsList.Len() < 2 { err = errors.New("BASE requires at least 2 arguments") return } if argsList.Len() > 3 { err = errors.New("BASE allows at most 3 arguments") return } var number float64 var radix, minLength int number, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } radix, err = strconv.Atoi(argsList.Front().Next().Value.(efp.Token).TValue) if err != nil { return } if radix < 2 || radix > 36 { err = errors.New("radix must be an integer ≥ 2 and ≤ 36") return } if argsList.Len() > 2 { minLength, err = strconv.Atoi(argsList.Back().Value.(efp.Token).TValue) if err != nil { return } } result = strconv.FormatInt(int64(number), radix) if len(result) < minLength { result = strings.Repeat("0", minLength-len(result)) + result } result = strings.ToUpper(result) return } // GCD function returns the greatest common divisor of two or more supplied // integers. The syntax of the function is: // // GCD(number1,[number2],...) // func (fn *formulaFuncs) GCD(argsList *list.List) (result string, err error) { if argsList.Len() == 0 { err = errors.New("GCD requires at least 1 argument") return } var ( val float64 nums = []float64{} ) for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(efp.Token) if token.TValue == "" { continue } val, err = strconv.ParseFloat(token.TValue, 64) if err != nil { return } nums = append(nums, val) } if nums[0] < 0 { err = errors.New("GCD only accepts positive arguments") return } if len(nums) == 1 { result = fmt.Sprintf("%g", nums[0]) return } cd := nums[0] for i := 1; i < len(nums); i++ { if nums[i] < 0 { err = errors.New("GCD only accepts positive arguments") return } cd = gcd(cd, nums[i]) } result = fmt.Sprintf("%g", cd) return } // lcm returns the least common multiple of two supplied integers. func lcm(a, b float64) float64 { a = math.Trunc(a) b = math.Trunc(b) if a == 0 && b == 0 { return 0 } return a * b / gcd(a, b) } // LCM function returns the least common multiple of two or more supplied // integers. The syntax of the function is: // // LCM(number1,[number2],...) // func (fn *formulaFuncs) LCM(argsList *list.List) (result string, err error) { if argsList.Len() == 0 { err = errors.New("LCM requires at least 1 argument") return } var ( val float64 nums = []float64{} ) for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(efp.Token) if token.TValue == "" { continue } val, err = strconv.ParseFloat(token.TValue, 64) if err != nil { return } nums = append(nums, val) } if nums[0] < 0 { err = errors.New("LCM only accepts positive arguments") return } if len(nums) == 1 { result = fmt.Sprintf("%g", nums[0]) return } cm := nums[0] for i := 1; i < len(nums); i++ { if nums[i] < 0 { err = errors.New("LCM only accepts positive arguments") return } cm = lcm(cm, nums[i]) } result = fmt.Sprintf("%g", cm) return } // POWER function calculates a given number, raised to a supplied power. // The syntax of the function is: // // POWER(number,power) // func (fn *formulaFuncs) POWER(argsList *list.List) (result string, err error) { if argsList.Len() != 2 { err = errors.New("POWER requires 2 numeric arguments") return } var x, y float64 x, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } y, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64) if err != nil { return } if x == 0 && y == 0 { err = errors.New(formulaErrorNUM) return } if x == 0 && y < 0 { err = errors.New(formulaErrorDIV) return } result = fmt.Sprintf("%g", math.Pow(x, y)) return } // PRODUCT function returns the product (multiplication) of a supplied set of // numerical values. The syntax of the function is: // // PRODUCT(number1,[number2],...) // func (fn *formulaFuncs) PRODUCT(argsList *list.List) (result string, err error) { var ( val float64 product float64 = 1 ) for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(efp.Token) if token.TValue == "" { continue } val, err = strconv.ParseFloat(token.TValue, 64) if err != nil { return } product = product * val } result = fmt.Sprintf("%g", product) return } // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied // number. I.e. if the number is positive, the Sign function returns +1, if // the number is negative, the function returns -1 and if the number is 0 // (zero), the function returns 0. The syntax of the function is: // // SIGN(number) // func (fn *formulaFuncs) SIGN(argsList *list.List) (result string, err error) { if argsList.Len() != 1 { err = errors.New("SIGN requires 1 numeric arguments") return } var val float64 val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } if val < 0 { result = "-1" return } if val > 0 { result = "1" return } result = "0" return } // SQRT function calculates the positive square root of a supplied number. The // syntax of the function is: // // SQRT(number) // func (fn *formulaFuncs) SQRT(argsList *list.List) (result string, err error) { if argsList.Len() != 1 { err = errors.New("SQRT requires 1 numeric arguments") return } var val float64 val, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } if val < 0 { err = errors.New(formulaErrorNUM) return } result = fmt.Sprintf("%g", math.Sqrt(val)) return } // SUM function adds together a supplied set of numbers and returns the sum of // these values. The syntax of the function is: // // SUM(number1,[number2],...) // func (fn *formulaFuncs) SUM(argsList *list.List) (result string, err error) { var val float64 var sum float64 for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(efp.Token) if token.TValue == "" { continue } val, err = strconv.ParseFloat(token.TValue, 64) if err != nil { return } sum += val } result = fmt.Sprintf("%g", sum) return } // QUOTIENT function returns the integer portion of a division between two // supplied numbers. The syntax of the function is: // // QUOTIENT(numerator,denominator) // func (fn *formulaFuncs) QUOTIENT(argsList *list.List) (result string, err error) { if argsList.Len() != 2 { err = errors.New("QUOTIENT requires 2 numeric arguments") return } var x, y float64 x, err = strconv.ParseFloat(argsList.Front().Value.(efp.Token).TValue, 64) if err != nil { return } y, err = strconv.ParseFloat(argsList.Back().Value.(efp.Token).TValue, 64) if err != nil { return } if y == 0 { err = errors.New(formulaErrorDIV) return } result = fmt.Sprintf("%g", math.Trunc(x/y)) return }