You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
excelize-formula/calc.go

8069 lines
236 KiB

// Copyright 2016 - 2021 The excelize Authors. All rights reserved. Use of
// this source code is governed by a BSD-style license that can be found in
// the LICENSE file.
//
// Package excelize providing a set of functions that allow you to write to
// and read from XLSX / XLSM / XLTM files. Supports reading and writing
// spreadsheet documents generated by Microsoft Excel™ 2007 and later. Supports
// complex components by high compatibility, and provided streaming API for
// generating or reading data from a worksheet with huge amounts of data. This
// library needs Go version 1.15 or later.
package excelize
import (
"bytes"
"container/list"
"errors"
"fmt"
"math"
"math/cmplx"
"math/rand"
"net/url"
"reflect"
"regexp"
"sort"
"strconv"
"strings"
"time"
"unicode"
"unsafe"
"github.com/xuri/efp"
"golang.org/x/text/language"
"golang.org/x/text/message"
)
// Excel formula errors
const (
formulaErrorDIV = "#DIV/0!"
formulaErrorNAME = "#NAME?"
formulaErrorNA = "#N/A"
formulaErrorNUM = "#NUM!"
formulaErrorVALUE = "#VALUE!"
formulaErrorREF = "#REF!"
formulaErrorNULL = "#NULL"
formulaErrorSPILL = "#SPILL!"
formulaErrorCALC = "#CALC!"
formulaErrorGETTINGDATA = "#GETTING_DATA"
)
// Numeric precision correct numeric values as legacy Excel application
// https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the
// top figure the fraction 1/9000 in Excel is displayed. Although this number
// has a decimal representation that is an infinite string of ones, Excel
// displays only the leading 15 figures. In the second line, the number one
// is added to the fraction, and again Excel displays only 15 figures.
const numericPrecision = 1000000000000000
const maxFinancialIterations = 128
const financialPercision = 1.0e-08
// cellRef defines the structure of a cell reference.
type cellRef struct {
Col int
Row int
Sheet string
}
// cellRef defines the structure of a cell range.
type cellRange struct {
From cellRef
To cellRef
}
// formula criteria condition enumeration.
const (
_ byte = iota
criteriaEq
criteriaLe
criteriaGe
criteriaL
criteriaG
criteriaBeg
criteriaEnd
criteriaErr
)
// formulaCriteria defined formula criteria parser result.
type formulaCriteria struct {
Type byte
Condition string
}
// ArgType is the type if formula argument type.
type ArgType byte
// Formula argument types enumeration.
const (
ArgUnknown ArgType = iota
ArgNumber
ArgString
ArgList
ArgMatrix
ArgError
ArgEmpty
)
// formulaArg is the argument of a formula or function.
type formulaArg struct {
SheetName string
Number float64
String string
List []formulaArg
Matrix [][]formulaArg
Boolean bool
Error string
Type ArgType
cellRefs, cellRanges *list.List
}
// Value returns a string data type of the formula argument.
func (fa formulaArg) Value() (value string) {
switch fa.Type {
case ArgNumber:
if fa.Boolean {
if fa.Number == 0 {
return "FALSE"
}
return "TRUE"
}
return fmt.Sprintf("%g", fa.Number)
case ArgString:
return fa.String
case ArgError:
return fa.Error
}
return
}
// ToNumber returns a formula argument with number data type.
func (fa formulaArg) ToNumber() formulaArg {
var n float64
var err error
switch fa.Type {
case ArgString:
n, err = strconv.ParseFloat(fa.String, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
case ArgNumber:
n = fa.Number
}
return newNumberFormulaArg(n)
}
// ToBool returns a formula argument with boolean data type.
func (fa formulaArg) ToBool() formulaArg {
var b bool
var err error
switch fa.Type {
case ArgString:
b, err = strconv.ParseBool(fa.String)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
case ArgNumber:
if fa.Boolean && fa.Number == 1 {
b = true
}
}
return newBoolFormulaArg(b)
}
// ToList returns a formula argument with array data type.
func (fa formulaArg) ToList() []formulaArg {
switch fa.Type {
case ArgMatrix:
list := []formulaArg{}
for _, row := range fa.Matrix {
list = append(list, row...)
}
return list
case ArgList:
return fa.List
case ArgNumber, ArgString, ArgError, ArgUnknown:
return []formulaArg{fa}
}
return nil
}
// formulaFuncs is the type of the formula functions.
type formulaFuncs struct {
f *File
sheet, cell string
}
// tokenPriority defined basic arithmetic operator priority.
var tokenPriority = map[string]int{
"^": 5,
"*": 4,
"/": 4,
"+": 3,
"-": 3,
"=": 2,
"<>": 2,
"<": 2,
"<=": 2,
">": 2,
">=": 2,
"&": 1,
}
// CalcCellValue provides a function to get calculated cell value. This
// feature is currently in working processing. Array formula, table formula
// and some other formulas are not supported currently.
//
// Supported formula functions:
//
// ABS
// ACOS
// ACOSH
// ACOT
// ACOTH
// AND
// ARABIC
// ASIN
// ASINH
// ATAN
// ATAN2
// ATANH
// AVERAGE
// AVERAGEA
// BASE
// BESSELI
// BESSELJ
// BESSELK
// BESSELY
// BIN2DEC
// BIN2HEX
// BIN2OCT
// BITAND
// BITLSHIFT
// BITOR
// BITRSHIFT
// BITXOR
// CEILING
// CEILING.MATH
// CEILING.PRECISE
// CHAR
// CHOOSE
// CLEAN
// CODE
// COLUMN
// COLUMNS
// COMBIN
// COMBINA
// COMPLEX
// CONCAT
// CONCATENATE
// COS
// COSH
// COT
// COTH
// COUNT
// COUNTA
// COUNTBLANK
// CSC
// CSCH
// CUMIPMT
// CUMPRINC
// DATE
// DATEDIF
// DB
// DDB
// DEC2BIN
// DEC2HEX
// DEC2OCT
// DECIMAL
// DEGREES
// DOLLARDE
// DOLLARFR
// EFFECT
// ENCODEURL
// EVEN
// EXACT
// EXP
// FACT
// FACTDOUBLE
// FALSE
// FIND
// FINDB
// FISHER
// FISHERINV
// FIXED
// FLOOR
// FLOOR.MATH
// FLOOR.PRECISE
// FV
// FVSCHEDULE
// GAMMA
// GAMMALN
// GCD
// HARMEAN
// HEX2BIN
// HEX2DEC
// HEX2OCT
// HLOOKUP
// IF
// IFERROR
// IMABS
// IMAGINARY
// IMARGUMENT
// IMCONJUGATE
// IMCOS
// IMCOSH
// IMCOT
// IMCSC
// IMCSCH
// IMDIV
// IMEXP
// IMLN
// IMLOG10
// IMLOG2
// IMPOWER
// IMPRODUCT
// IMREAL
// IMSEC
// IMSECH
// IMSIN
// IMSINH
// IMSQRT
// IMSUB
// IMSUM
// IMTAN
// INT
// IPMT
// IRR
// ISBLANK
// ISERR
// ISERROR
// ISEVEN
// ISNA
// ISNONTEXT
// ISNUMBER
// ISODD
// ISTEXT
// ISO.CEILING
// ISPMT
// KURT
// LARGE
// LCM
// LEFT
// LEFTB
// LEN
// LENB
// LN
// LOG
// LOG10
// LOOKUP
// LOWER
// MAX
// MDETERM
// MEDIAN
// MID
// MIDB
// MIN
// MINA
// MIRR
// MOD
// MROUND
// MULTINOMIAL
// MUNIT
// N
// NA
// NOMINAL
// NORM.DIST
// NORMDIST
// NORM.INV
// NORMINV
// NORM.S.DIST
// NORMSDIST
// NORM.S.INV
// NORMSINV
// NOT
// NOW
// NPER
// NPV
// OCT2BIN
// OCT2DEC
// OCT2HEX
// ODD
// OR
// PDURATION
// PERCENTILE.INC
// PERCENTILE
// PERMUT
// PERMUTATIONA
// PI
// PMT
// POISSON.DIST
// POISSON
// POWER
// PPMT
// PRODUCT
// PROPER
// QUARTILE
// QUARTILE.INC
// QUOTIENT
// RADIANS
// RAND
// RANDBETWEEN
// REPLACE
// REPLACEB
// REPT
// RIGHT
// RIGHTB
// ROMAN
// ROUND
// ROUNDDOWN
// ROUNDUP
// ROW
// ROWS
// SEC
// SECH
// SHEET
// SIGN
// SIN
// SINH
// SKEW
// SMALL
// SQRT
// SQRTPI
// STDEV
// STDEV.S
// STDEVA
// SUBSTITUTE
// SUM
// SUMIF
// SUMSQ
// T
// TAN
// TANH
// TODAY
// TRIM
// TRUE
// TRUNC
// UNICHAR
// UNICODE
// UPPER
// VAR.P
// VARP
// VLOOKUP
//
func (f *File) CalcCellValue(sheet, cell string) (result string, err error) {
var (
formula string
token efp.Token
)
if formula, err = f.GetCellFormula(sheet, cell); err != nil {
return
}
ps := efp.ExcelParser()
tokens := ps.Parse(formula)
if tokens == nil {
return
}
if token, err = f.evalInfixExp(sheet, cell, tokens); err != nil {
return
}
result = token.TValue
isNum, precision := isNumeric(result)
if isNum && precision > 15 {
num, _ := roundPrecision(result)
result = strings.ToUpper(num)
}
return
}
// getPriority calculate arithmetic operator priority.
func getPriority(token efp.Token) (pri int) {
pri = tokenPriority[token.TValue]
if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix {
pri = 6
}
if isBeginParenthesesToken(token) { // (
pri = 0
}
return
}
// newNumberFormulaArg constructs a number formula argument.
func newNumberFormulaArg(n float64) formulaArg {
if math.IsNaN(n) {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return formulaArg{Type: ArgNumber, Number: n}
}
// newStringFormulaArg constructs a string formula argument.
func newStringFormulaArg(s string) formulaArg {
return formulaArg{Type: ArgString, String: s}
}
// newMatrixFormulaArg constructs a matrix formula argument.
func newMatrixFormulaArg(m [][]formulaArg) formulaArg {
return formulaArg{Type: ArgMatrix, Matrix: m}
}
// newListFormulaArg create a list formula argument.
func newListFormulaArg(l []formulaArg) formulaArg {
return formulaArg{Type: ArgList, List: l}
}
// newBoolFormulaArg constructs a boolean formula argument.
func newBoolFormulaArg(b bool) formulaArg {
var n float64
if b {
n = 1
}
return formulaArg{Type: ArgNumber, Number: n, Boolean: true}
}
// newErrorFormulaArg create an error formula argument of a given type with a
// specified error message.
func newErrorFormulaArg(formulaError, msg string) formulaArg {
return formulaArg{Type: ArgError, String: formulaError, Error: msg}
}
// newEmptyFormulaArg create an empty formula argument.
func newEmptyFormulaArg() formulaArg {
return formulaArg{Type: ArgEmpty}
}
// evalInfixExp evaluate syntax analysis by given infix expression after
// lexical analysis. Evaluate an infix expression containing formulas by
// stacks:
//
// opd - Operand
// opt - Operator
// opf - Operation formula
// opfd - Operand of the operation formula
// opft - Operator of the operation formula
// args - Arguments list of the operation formula
//
// TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union
//
func (f *File) evalInfixExp(sheet, cell string, tokens []efp.Token) (efp.Token, error) {
var err error
opdStack, optStack, opfStack, opfdStack, opftStack, argsStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack(), NewStack()
for i := 0; i < len(tokens); i++ {
token := tokens[i]
// out of function stack
if opfStack.Len() == 0 {
if err = f.parseToken(sheet, token, opdStack, optStack); err != nil {
return efp.Token{}, err
}
}
// function start
if isFunctionStartToken(token) {
opfStack.Push(token)
argsStack.Push(list.New().Init())
continue
}
// in function stack, walk 2 token at once
if opfStack.Len() > 0 {
var nextToken efp.Token
if i+1 < len(tokens) {
nextToken = tokens[i+1]
}
// current token is args or range, skip next token, order required: parse reference first
if token.TSubType == efp.TokenSubTypeRange {
if !opftStack.Empty() {
// parse reference: must reference at here
result, err := f.parseReference(sheet, token.TValue)
if err != nil {
return efp.Token{TValue: formulaErrorNAME}, err
}
if result.Type != ArgString {
return efp.Token{}, errors.New(formulaErrorVALUE)
}
opfdStack.Push(efp.Token{
TType: efp.TokenTypeOperand,
TSubType: efp.TokenSubTypeNumber,
TValue: result.String,
})
continue
}
if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction {
// parse reference: reference or range at here
refTo := f.getDefinedNameRefTo(token.TValue, sheet)
if refTo != "" {
token.TValue = refTo
}
result, err := f.parseReference(sheet, token.TValue)
if err != nil {
return efp.Token{TValue: formulaErrorNAME}, err
}
if result.Type == ArgUnknown {
return efp.Token{}, errors.New(formulaErrorVALUE)
}
argsStack.Peek().(*list.List).PushBack(result)
continue
}
}
// check current token is opft
if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil {
return efp.Token{}, err
}
// current token is arg
if token.TType == efp.TokenTypeArgument {
for !opftStack.Empty() {
// calculate trigger
topOpt := opftStack.Peek().(efp.Token)
if err := calculate(opfdStack, topOpt); err != nil {
argsStack.Peek().(*list.List).PushFront(newErrorFormulaArg(formulaErrorVALUE, err.Error()))
}
opftStack.Pop()
}
if !opfdStack.Empty() {
argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
}
continue
}
// current token is logical
if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeLogical {
argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(token.TValue))
}
if err = f.evalInfixExpFunc(sheet, cell, token, nextToken, opfStack, opdStack, opftStack, opfdStack, argsStack); err != nil {
return efp.Token{}, err
}
}
}
for optStack.Len() != 0 {
topOpt := optStack.Peek().(efp.Token)
if err = calculate(opdStack, topOpt); err != nil {
return efp.Token{}, err
}
optStack.Pop()
}
if opdStack.Len() == 0 {
return efp.Token{}, ErrInvalidFormula
}
return opdStack.Peek().(efp.Token), err
}
// evalInfixExpFunc evaluate formula function in the infix expression.
func (f *File) evalInfixExpFunc(sheet, cell string, token, nextToken efp.Token, opfStack, opdStack, opftStack, opfdStack, argsStack *Stack) error {
if !isFunctionStopToken(token) {
return nil
}
// current token is function stop
for !opftStack.Empty() {
// calculate trigger
topOpt := opftStack.Peek().(efp.Token)
if err := calculate(opfdStack, topOpt); err != nil {
return err
}
opftStack.Pop()
}
// push opfd to args
if opfdStack.Len() > 0 {
argsStack.Peek().(*list.List).PushBack(newStringFormulaArg(opfdStack.Pop().(efp.Token).TValue))
}
// call formula function to evaluate
arg := callFuncByName(&formulaFuncs{f: f, sheet: sheet, cell: cell}, strings.NewReplacer(
"_xlfn.", "", ".", "dot").Replace(opfStack.Peek().(efp.Token).TValue),
[]reflect.Value{reflect.ValueOf(argsStack.Peek().(*list.List))})
if arg.Type == ArgError && opfStack.Len() == 1 {
return errors.New(arg.Value())
}
argsStack.Pop()
opfStack.Pop()
if opfStack.Len() > 0 { // still in function stack
if nextToken.TType == efp.TokenTypeOperatorInfix {
// mathematics calculate in formula function
opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
} else {
argsStack.Peek().(*list.List).PushBack(arg)
}
} else {
opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
}
return nil
}
// calcPow evaluate exponentiation arithmetic operations.
func calcPow(rOpd, lOpd string, opdStack *Stack) error {
lOpdVal, err := strconv.ParseFloat(lOpd, 64)
if err != nil {
return err
}
rOpdVal, err := strconv.ParseFloat(rOpd, 64)
if err != nil {
return err
}
result := math.Pow(lOpdVal, rOpdVal)
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
return nil
}
// calcEq evaluate equal arithmetic operations.
func calcEq(rOpd, lOpd string, opdStack *Stack) error {
opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
return nil
}
// calcNEq evaluate not equal arithmetic operations.
func calcNEq(rOpd, lOpd string, opdStack *Stack) error {
opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
return nil
}
// calcL evaluate less than arithmetic operations.
func calcL(rOpd, lOpd string, opdStack *Stack) error {
lOpdVal, err := strconv.ParseFloat(lOpd, 64)
if err != nil {
return err
}
rOpdVal, err := strconv.ParseFloat(rOpd, 64)
if err != nil {
return err
}
opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
return nil
}
// calcLe evaluate less than or equal arithmetic operations.
func calcLe(rOpd, lOpd string, opdStack *Stack) error {
lOpdVal, err := strconv.ParseFloat(lOpd, 64)
if err != nil {
return err
}
rOpdVal, err := strconv.ParseFloat(rOpd, 64)
if err != nil {
return err
}
opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
return nil
}
// calcG evaluate greater than or equal arithmetic operations.
func calcG(rOpd, lOpd string, opdStack *Stack) error {
lOpdVal, err := strconv.ParseFloat(lOpd, 64)
if err != nil {
return err
}
rOpdVal, err := strconv.ParseFloat(rOpd, 64)
if err != nil {
return err
}
opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
return nil
}
// calcGe evaluate greater than or equal arithmetic operations.
func calcGe(rOpd, lOpd string, opdStack *Stack) error {
lOpdVal, err := strconv.ParseFloat(lOpd, 64)
if err != nil {
return err
}
rOpdVal, err := strconv.ParseFloat(rOpd, 64)
if err != nil {
return err
}
opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
return nil
}
// calcSplice evaluate splice '&' operations.
func calcSplice(rOpd, lOpd string, opdStack *Stack) error {
opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
return nil
}
// calcAdd evaluate addition arithmetic operations.
func calcAdd(rOpd, lOpd string, opdStack *Stack) error {
lOpdVal, err := strconv.ParseFloat(lOpd, 64)
if err != nil {
return err
}
rOpdVal, err := strconv.ParseFloat(rOpd, 64)
if err != nil {
return err
}
result := lOpdVal + rOpdVal
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
return nil
}
// calcSubtract evaluate subtraction arithmetic operations.
func calcSubtract(rOpd, lOpd string, opdStack *Stack) error {
lOpdVal, err := strconv.ParseFloat(lOpd, 64)
if err != nil {
return err
}
rOpdVal, err := strconv.ParseFloat(rOpd, 64)
if err != nil {
return err
}
result := lOpdVal - rOpdVal
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
return nil
}
// calcMultiply evaluate multiplication arithmetic operations.
func calcMultiply(rOpd, lOpd string, opdStack *Stack) error {
lOpdVal, err := strconv.ParseFloat(lOpd, 64)
if err != nil {
return err
}
rOpdVal, err := strconv.ParseFloat(rOpd, 64)
if err != nil {
return err
}
result := lOpdVal * rOpdVal
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
return nil
}
// calcDiv evaluate division arithmetic operations.
func calcDiv(rOpd, lOpd string, opdStack *Stack) error {
lOpdVal, err := strconv.ParseFloat(lOpd, 64)
if err != nil {
return err
}
rOpdVal, err := strconv.ParseFloat(rOpd, 64)
if err != nil {
return err
}
result := lOpdVal / rOpdVal
if rOpdVal == 0 {
return errors.New(formulaErrorDIV)
}
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
return nil
}
// calculate evaluate basic arithmetic operations.
func calculate(opdStack *Stack, opt efp.Token) error {
if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix {
if opdStack.Len() < 1 {
return ErrInvalidFormula
}
opd := opdStack.Pop().(efp.Token)
opdVal, err := strconv.ParseFloat(opd.TValue, 64)
if err != nil {
return err
}
result := 0 - opdVal
opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber})
}
tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{
"^": calcPow,
"*": calcMultiply,
"/": calcDiv,
"+": calcAdd,
"=": calcEq,
"<>": calcNEq,
"<": calcL,
"<=": calcLe,
">": calcG,
">=": calcGe,
"&": calcSplice,
}
if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix {
if opdStack.Len() < 2 {
return ErrInvalidFormula
}
rOpd := opdStack.Pop().(efp.Token)
lOpd := opdStack.Pop().(efp.Token)
if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
return err
}
}
fn, ok := tokenCalcFunc[opt.TValue]
if ok {
if opdStack.Len() < 2 {
return ErrInvalidFormula
}
rOpd := opdStack.Pop().(efp.Token)
lOpd := opdStack.Pop().(efp.Token)
if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil {
return err
}
}
return nil
}
// parseOperatorPrefixToken parse operator prefix token.
func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) {
if optStack.Len() == 0 {
optStack.Push(token)
} else {
tokenPriority := getPriority(token)
topOpt := optStack.Peek().(efp.Token)
topOptPriority := getPriority(topOpt)
if tokenPriority > topOptPriority {
optStack.Push(token)
} else {
for tokenPriority <= topOptPriority {
optStack.Pop()
if err = calculate(opdStack, topOpt); err != nil {
return
}
if optStack.Len() > 0 {
topOpt = optStack.Peek().(efp.Token)
topOptPriority = getPriority(topOpt)
continue
}
break
}
optStack.Push(token)
}
}
return
}
// isFunctionStartToken determine if the token is function stop.
func isFunctionStartToken(token efp.Token) bool {
return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart
}
// isFunctionStopToken determine if the token is function stop.
func isFunctionStopToken(token efp.Token) bool {
return token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop
}
// isBeginParenthesesToken determine if the token is begin parentheses: (.
func isBeginParenthesesToken(token efp.Token) bool {
return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart
}
// isEndParenthesesToken determine if the token is end parentheses: ).
func isEndParenthesesToken(token efp.Token) bool {
return token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop
}
// isOperatorPrefixToken determine if the token is parse operator prefix
// token.
func isOperatorPrefixToken(token efp.Token) bool {
_, ok := tokenPriority[token.TValue]
return (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || (ok && token.TType == efp.TokenTypeOperatorInfix)
}
// getDefinedNameRefTo convert defined name to reference range.
func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) {
var workbookRefTo, worksheetRefTo string
for _, definedName := range f.GetDefinedName() {
if definedName.Name == definedNameName {
// worksheet scope takes precedence over scope workbook when both definedNames exist
if definedName.Scope == "Workbook" {
workbookRefTo = definedName.RefersTo
}
if definedName.Scope == currentSheet {
worksheetRefTo = definedName.RefersTo
}
}
}
refTo = workbookRefTo
if worksheetRefTo != "" {
refTo = worksheetRefTo
}
return
}
// parseToken parse basic arithmetic operator priority and evaluate based on
// operators and operands.
func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error {
// parse reference: must reference at here
if token.TSubType == efp.TokenSubTypeRange {
refTo := f.getDefinedNameRefTo(token.TValue, sheet)
if refTo != "" {
token.TValue = refTo
}
result, err := f.parseReference(sheet, token.TValue)
if err != nil {
return errors.New(formulaErrorNAME)
}
if result.Type != ArgString {
return errors.New(formulaErrorVALUE)
}
token.TValue = result.String
token.TType = efp.TokenTypeOperand
token.TSubType = efp.TokenSubTypeNumber
}
if isOperatorPrefixToken(token) {
if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil {
return err
}
}
if isBeginParenthesesToken(token) { // (
optStack.Push(token)
}
if isEndParenthesesToken(token) { // )
for !isBeginParenthesesToken(optStack.Peek().(efp.Token)) { // != (
topOpt := optStack.Peek().(efp.Token)
if err := calculate(opdStack, topOpt); err != nil {
return err
}
optStack.Pop()
}
optStack.Pop()
}
// opd
if token.TType == efp.TokenTypeOperand && (token.TSubType == efp.TokenSubTypeNumber || token.TSubType == efp.TokenSubTypeText) {
opdStack.Push(token)
}
return nil
}
// parseReference parse reference and extract values by given reference
// characters and default sheet name.
func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) {
reference = strings.Replace(reference, "$", "", -1)
refs, cellRanges, cellRefs := list.New(), list.New(), list.New()
for _, ref := range strings.Split(reference, ":") {
tokens := strings.Split(ref, "!")
cr := cellRef{}
if len(tokens) == 2 { // have a worksheet name
cr.Sheet = tokens[0]
// cast to cell coordinates
if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil {
// cast to column
if cr.Col, err = ColumnNameToNumber(tokens[1]); err != nil {
// cast to row
if cr.Row, err = strconv.Atoi(tokens[1]); err != nil {
err = newInvalidColumnNameError(tokens[1])
return
}
cr.Col = TotalColumns
}
}
if refs.Len() > 0 {
e := refs.Back()
cellRefs.PushBack(e.Value.(cellRef))
refs.Remove(e)
}
refs.PushBack(cr)
continue
}
// cast to cell coordinates
if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil {
// cast to column
if cr.Col, err = ColumnNameToNumber(tokens[0]); err != nil {
// cast to row
if cr.Row, err = strconv.Atoi(tokens[0]); err != nil {
err = newInvalidColumnNameError(tokens[0])
return
}
cr.Col = TotalColumns
}
cellRanges.PushBack(cellRange{
From: cellRef{Sheet: sheet, Col: cr.Col, Row: 1},
To: cellRef{Sheet: sheet, Col: cr.Col, Row: TotalRows},
})
cellRefs.Init()
arg, err = f.rangeResolver(cellRefs, cellRanges)
return
}
e := refs.Back()
if e == nil {
cr.Sheet = sheet
refs.PushBack(cr)
continue
}
cellRanges.PushBack(cellRange{
From: e.Value.(cellRef),
To: cr,
})
refs.Remove(e)
}
if refs.Len() > 0 {
e := refs.Back()
cellRefs.PushBack(e.Value.(cellRef))
refs.Remove(e)
}
arg, err = f.rangeResolver(cellRefs, cellRanges)
return
}
// prepareValueRange prepare value range.
func prepareValueRange(cr cellRange, valueRange []int) {
if cr.From.Row < valueRange[0] || valueRange[0] == 0 {
valueRange[0] = cr.From.Row
}
if cr.From.Col < valueRange[2] || valueRange[2] == 0 {
valueRange[2] = cr.From.Col
}
if cr.To.Row > valueRange[1] || valueRange[1] == 0 {
valueRange[1] = cr.To.Row
}
if cr.To.Col > valueRange[3] || valueRange[3] == 0 {
valueRange[3] = cr.To.Col
}
}
// prepareValueRef prepare value reference.
func prepareValueRef(cr cellRef, valueRange []int) {
if cr.Row < valueRange[0] || valueRange[0] == 0 {
valueRange[0] = cr.Row
}
if cr.Col < valueRange[2] || valueRange[2] == 0 {
valueRange[2] = cr.Col
}
if cr.Row > valueRange[1] || valueRange[1] == 0 {
valueRange[1] = cr.Row
}
if cr.Col > valueRange[3] || valueRange[3] == 0 {
valueRange[3] = cr.Col
}
}
// rangeResolver extract value as string from given reference and range list.
// This function will not ignore the empty cell. For example, A1:A2:A2:B3 will
// be reference A1:B3.
func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) {
arg.cellRefs, arg.cellRanges = cellRefs, cellRanges
// value range order: from row, to row, from column, to column
valueRange := []int{0, 0, 0, 0}
var sheet string
// prepare value range
for temp := cellRanges.Front(); temp != nil; temp = temp.Next() {
cr := temp.Value.(cellRange)
if cr.From.Sheet != cr.To.Sheet {
err = errors.New(formulaErrorVALUE)
}
rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row}
_ = sortCoordinates(rng)
cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3]
prepareValueRange(cr, valueRange)
if cr.From.Sheet != "" {
sheet = cr.From.Sheet
}
}
for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
cr := temp.Value.(cellRef)
if cr.Sheet != "" {
sheet = cr.Sheet
}
prepareValueRef(cr, valueRange)
}
// extract value from ranges
if cellRanges.Len() > 0 {
arg.Type = ArgMatrix
for row := valueRange[0]; row <= valueRange[1]; row++ {
var matrixRow = []formulaArg{}
for col := valueRange[2]; col <= valueRange[3]; col++ {
var cell, value string
if cell, err = CoordinatesToCellName(col, row); err != nil {
return
}
if value, err = f.GetCellValue(sheet, cell); err != nil {
return
}
matrixRow = append(matrixRow, formulaArg{
String: value,
Type: ArgString,
})
}
arg.Matrix = append(arg.Matrix, matrixRow)
}
return
}
// extract value from references
for temp := cellRefs.Front(); temp != nil; temp = temp.Next() {
cr := temp.Value.(cellRef)
var cell string
if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil {
return
}
if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil {
return
}
arg.Type = ArgString
}
return
}
// callFuncByName calls the no error or only error return function with
// reflect by given receiver, name and parameters.
func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) {
function := reflect.ValueOf(receiver).MethodByName(name)
if function.IsValid() {
rt := function.Call(params)
if len(rt) == 0 {
return
}
arg = rt[0].Interface().(formulaArg)
return
}
return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name))
}
// formulaCriteriaParser parse formula criteria.
func formulaCriteriaParser(exp string) (fc *formulaCriteria) {
fc = &formulaCriteria{}
if exp == "" {
return
}
if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 {
fc.Type, fc.Condition = criteriaEq, match[1]
return
}
if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
fc.Type, fc.Condition = criteriaEq, match[1]
return
}
if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
fc.Type, fc.Condition = criteriaLe, match[1]
return
}
if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
fc.Type, fc.Condition = criteriaGe, match[1]
return
}
if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
fc.Type, fc.Condition = criteriaL, match[1]
return
}
if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 {
fc.Type, fc.Condition = criteriaG, match[1]
return
}
if strings.Contains(exp, "*") {
if strings.HasPrefix(exp, "*") {
fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*")
}
if strings.HasSuffix(exp, "*") {
fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*")
}
return
}
fc.Type, fc.Condition = criteriaEq, exp
return
}
// formulaCriteriaEval evaluate formula criteria expression.
func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) {
var value, expected float64
var e error
var prepareValue = func(val, cond string) (value float64, expected float64, err error) {
if value, err = strconv.ParseFloat(val, 64); err != nil {
return
}
if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil {
return
}
return
}
switch criteria.Type {
case criteriaEq:
return val == criteria.Condition, err
case criteriaLe:
value, expected, e = prepareValue(val, criteria.Condition)
return value <= expected && e == nil, err
case criteriaGe:
value, expected, e = prepareValue(val, criteria.Condition)
return value >= expected && e == nil, err
case criteriaL:
value, expected, e = prepareValue(val, criteria.Condition)
return value < expected && e == nil, err
case criteriaG:
value, expected, e = prepareValue(val, criteria.Condition)
return value > expected && e == nil, err
case criteriaBeg:
return strings.HasPrefix(val, criteria.Condition), err
case criteriaEnd:
return strings.HasSuffix(val, criteria.Condition), err
}
return
}
// Engineering Functions
// BESSELI function the modified Bessel function, which is equivalent to the
// Bessel function evaluated for purely imaginary arguments. The syntax of
// the Besseli function is:
//
// BESSELI(x,n)
//
func (fn *formulaFuncs) BESSELI(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "BESSELI requires 2 numeric arguments")
}
return fn.bassel(argsList, true)
}
// BESSELJ function returns the Bessel function, Jn(x), for a specified order
// and value of x. The syntax of the function is:
//
// BESSELJ(x,n)
//
func (fn *formulaFuncs) BESSELJ(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "BESSELJ requires 2 numeric arguments")
}
return fn.bassel(argsList, false)
}
// bassel is an implementation of the formula function BESSELI and BESSELJ.
func (fn *formulaFuncs) bassel(argsList *list.List, modfied bool) formulaArg {
x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
if x.Type != ArgNumber {
return x
}
if n.Type != ArgNumber {
return n
}
max, x1 := 100, x.Number*0.5
x2 := x1 * x1
x1 = math.Pow(x1, n.Number)
n1, n2, n3, n4, add := fact(n.Number), 1.0, 0.0, n.Number, false
result := x1 / n1
t := result * 0.9
for result != t && max != 0 {
x1 *= x2
n3++
n1 *= n3
n4++
n2 *= n4
t = result
if modfied || add {
result += (x1 / n1 / n2)
} else {
result -= (x1 / n1 / n2)
}
max--
add = !add
}
return newNumberFormulaArg(result)
}
// BESSELK function calculates the modified Bessel functions, Kn(x), which are
// also known as the hyperbolic Bessel Functions. These are the equivalent of
// the Bessel functions, evaluated for purely imaginary arguments. The syntax
// of the function is:
//
// BESSELK(x,n)
//
func (fn *formulaFuncs) BESSELK(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "BESSELK requires 2 numeric arguments")
}
x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
if x.Type != ArgNumber {
return x
}
if n.Type != ArgNumber {
return n
}
if x.Number <= 0 || n.Number < 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
var result float64
switch math.Floor(n.Number) {
case 0:
result = fn.besselK0(x)
case 1:
result = fn.besselK1(x)
default:
result = fn.besselK2(x, n)
}
return newNumberFormulaArg(result)
}
// besselK0 is an implementation of the formula function BESSELK.
func (fn *formulaFuncs) besselK0(x formulaArg) float64 {
var y float64
if x.Number <= 2 {
n2 := x.Number * 0.5
y = n2 * n2
args := list.New()
args.PushBack(x)
args.PushBack(newNumberFormulaArg(0))
return -math.Log(n2)*fn.BESSELI(args).Number +
(-0.57721566 + y*(0.42278420+y*(0.23069756+y*(0.3488590e-1+y*(0.262698e-2+y*
(0.10750e-3+y*0.74e-5))))))
}
y = 2 / x.Number
return math.Exp(-x.Number) / math.Sqrt(x.Number) *
(1.25331414 + y*(-0.7832358e-1+y*(0.2189568e-1+y*(-0.1062446e-1+y*
(0.587872e-2+y*(-0.251540e-2+y*0.53208e-3))))))
}
// besselK1 is an implementation of the formula function BESSELK.
func (fn *formulaFuncs) besselK1(x formulaArg) float64 {
var n2, y float64
if x.Number <= 2 {
n2 = x.Number * 0.5
y = n2 * n2
args := list.New()
args.PushBack(x)
args.PushBack(newNumberFormulaArg(1))
return math.Log(n2)*fn.BESSELI(args).Number +
(1+y*(0.15443144+y*(-0.67278579+y*(-0.18156897+y*(-0.1919402e-1+y*(-0.110404e-2+y*(-0.4686e-4)))))))/x.Number
}
y = 2 / x.Number
return math.Exp(-x.Number) / math.Sqrt(x.Number) *
(1.25331414 + y*(0.23498619+y*(-0.3655620e-1+y*(0.1504268e-1+y*(-0.780353e-2+y*
(0.325614e-2+y*(-0.68245e-3)))))))
}
// besselK2 is an implementation of the formula function BESSELK.
func (fn *formulaFuncs) besselK2(x, n formulaArg) float64 {
tox, bkm, bk, bkp := 2/x.Number, fn.besselK0(x), fn.besselK1(x), 0.0
for i := 1.0; i < n.Number; i++ {
bkp = bkm + i*tox*bk
bkm = bk
bk = bkp
}
return bk
}
// BESSELY function returns the Bessel function, Yn(x), (also known as the
// Weber function or the Neumann function), for a specified order and value
// of x. The syntax of the function is:
//
// BESSELY(x,n)
//
func (fn *formulaFuncs) BESSELY(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "BESSELY requires 2 numeric arguments")
}
x, n := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
if x.Type != ArgNumber {
return x
}
if n.Type != ArgNumber {
return n
}
if x.Number <= 0 || n.Number < 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
var result float64
switch math.Floor(n.Number) {
case 0:
result = fn.besselY0(x)
case 1:
result = fn.besselY1(x)
default:
result = fn.besselY2(x, n)
}
return newNumberFormulaArg(result)
}
// besselY0 is an implementation of the formula function BESSELY.
func (fn *formulaFuncs) besselY0(x formulaArg) float64 {
var y float64
if x.Number < 8 {
y = x.Number * x.Number
f1 := -2957821389.0 + y*(7062834065.0+y*(-512359803.6+y*(10879881.29+y*
(-86327.92757+y*228.4622733))))
f2 := 40076544269.0 + y*(745249964.8+y*(7189466.438+y*
(47447.26470+y*(226.1030244+y))))
args := list.New()
args.PushBack(x)
args.PushBack(newNumberFormulaArg(0))
return f1/f2 + 0.636619772*fn.BESSELJ(args).Number*math.Log(x.Number)
}
z := 8.0 / x.Number
y = z * z
xx := x.Number - 0.785398164
f1 := 1 + y*(-0.1098628627e-2+y*(0.2734510407e-4+y*(-0.2073370639e-5+y*0.2093887211e-6)))
f2 := -0.1562499995e-1 + y*(0.1430488765e-3+y*(-0.6911147651e-5+y*(0.7621095161e-6+y*
(-0.934945152e-7))))
return math.Sqrt(0.636619772/x.Number) * (math.Sin(xx)*f1 + z*math.Cos(xx)*f2)
}
// besselY1 is an implementation of the formula function BESSELY.
func (fn *formulaFuncs) besselY1(x formulaArg) float64 {
if x.Number < 8 {
y := x.Number * x.Number
f1 := x.Number * (-0.4900604943e13 + y*(0.1275274390e13+y*(-0.5153438139e11+y*
(0.7349264551e9+y*(-0.4237922726e7+y*0.8511937935e4)))))
f2 := 0.2499580570e14 + y*(0.4244419664e12+y*(0.3733650367e10+y*(0.2245904002e8+y*
(0.1020426050e6+y*(0.3549632885e3+y)))))
args := list.New()
args.PushBack(x)
args.PushBack(newNumberFormulaArg(1))
return f1/f2 + 0.636619772*(fn.BESSELJ(args).Number*math.Log(x.Number)-1/x.Number)
}
return math.Sqrt(0.636619772/x.Number) * math.Sin(x.Number-2.356194491)
}
// besselY2 is an implementation of the formula function BESSELY.
func (fn *formulaFuncs) besselY2(x, n formulaArg) float64 {
tox, bym, by, byp := 2/x.Number, fn.besselY0(x), fn.besselY1(x), 0.0
for i := 1.0; i < n.Number; i++ {
byp = i*tox*by - bym
bym = by
by = byp
}
return by
}
// BIN2DEC function converts a Binary (a base-2 number) into a decimal number.
// The syntax of the function is:
//
// BIN2DEC(number)
//
func (fn *formulaFuncs) BIN2DEC(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "BIN2DEC requires 1 numeric argument")
}
token := argsList.Front().Value.(formulaArg)
number := token.ToNumber()
if number.Type != ArgNumber {
return newErrorFormulaArg(formulaErrorVALUE, number.Error)
}
return fn.bin2dec(token.Value())
}
// BIN2HEX function converts a Binary (Base 2) number into a Hexadecimal
// (Base 16) number. The syntax of the function is:
//
// BIN2HEX(number,[places])
//
func (fn *formulaFuncs) BIN2HEX(argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX requires at least 1 argument")
}
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "BIN2HEX allows at most 2 arguments")
}
token := argsList.Front().Value.(formulaArg)
number := token.ToNumber()
if number.Type != ArgNumber {
return newErrorFormulaArg(formulaErrorVALUE, number.Error)
}
decimal, newList := fn.bin2dec(token.Value()), list.New()
if decimal.Type != ArgNumber {
return decimal
}
newList.PushBack(decimal)
if argsList.Len() == 2 {
newList.PushBack(argsList.Back().Value.(formulaArg))
}
return fn.dec2x("BIN2HEX", newList)
}
// BIN2OCT function converts a Binary (Base 2) number into an Octal (Base 8)
// number. The syntax of the function is:
//
// BIN2OCT(number,[places])
//
func (fn *formulaFuncs) BIN2OCT(argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT requires at least 1 argument")
}
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "BIN2OCT allows at most 2 arguments")
}
token := argsList.Front().Value.(formulaArg)
number := token.ToNumber()
if number.Type != ArgNumber {
return newErrorFormulaArg(formulaErrorVALUE, number.Error)
}
decimal, newList := fn.bin2dec(token.Value()), list.New()
if decimal.Type != ArgNumber {
return decimal
}
newList.PushBack(decimal)
if argsList.Len() == 2 {
newList.PushBack(argsList.Back().Value.(formulaArg))
}
return fn.dec2x("BIN2OCT", newList)
}
// bin2dec is an implementation of the formula function BIN2DEC.
func (fn *formulaFuncs) bin2dec(number string) formulaArg {
decimal, length := 0.0, len(number)
for i := length; i > 0; i-- {
s := string(number[length-i])
if i == 10 && s == "1" {
decimal += math.Pow(-2.0, float64(i-1))
continue
}
if s == "1" {
decimal += math.Pow(2.0, float64(i-1))
continue
}
if s != "0" {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
}
return newNumberFormulaArg(decimal)
}
// BITAND function returns the bitwise 'AND' for two supplied integers. The
// syntax of the function is:
//
// BITAND(number1,number2)
//
func (fn *formulaFuncs) BITAND(argsList *list.List) formulaArg {
return fn.bitwise("BITAND", argsList)
}
// BITLSHIFT function returns a supplied integer, shifted left by a specified
// number of bits. The syntax of the function is:
//
// BITLSHIFT(number1,shift_amount)
//
func (fn *formulaFuncs) BITLSHIFT(argsList *list.List) formulaArg {
return fn.bitwise("BITLSHIFT", argsList)
}
// BITOR function returns the bitwise 'OR' for two supplied integers. The
// syntax of the function is:
//
// BITOR(number1,number2)
//
func (fn *formulaFuncs) BITOR(argsList *list.List) formulaArg {
return fn.bitwise("BITOR", argsList)
}
// BITRSHIFT function returns a supplied integer, shifted right by a specified
// number of bits. The syntax of the function is:
//
// BITRSHIFT(number1,shift_amount)
//
func (fn *formulaFuncs) BITRSHIFT(argsList *list.List) formulaArg {
return fn.bitwise("BITRSHIFT", argsList)
}
// BITXOR function returns the bitwise 'XOR' (exclusive 'OR') for two supplied
// integers. The syntax of the function is:
//
// BITXOR(number1,number2)
//
func (fn *formulaFuncs) BITXOR(argsList *list.List) formulaArg {
return fn.bitwise("BITXOR", argsList)
}
// bitwise is an implementation of the formula function BITAND, BITLSHIFT,
// BITOR, BITRSHIFT and BITXOR.
func (fn *formulaFuncs) bitwise(name string, argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 numeric arguments", name))
}
num1, num2 := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Back().Value.(formulaArg).ToNumber()
if num1.Type != ArgNumber || num2.Type != ArgNumber {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
max := math.Pow(2, 48) - 1
if num1.Number < 0 || num1.Number > max || num2.Number < 0 || num2.Number > max {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
bitwiseFuncMap := map[string]func(a, b int) int{
"BITAND": func(a, b int) int { return a & b },
"BITLSHIFT": func(a, b int) int { return a << uint(b) },
"BITOR": func(a, b int) int { return a | b },
"BITRSHIFT": func(a, b int) int { return a >> uint(b) },
"BITXOR": func(a, b int) int { return a ^ b },
}
bitwiseFunc := bitwiseFuncMap[name]
return newNumberFormulaArg(float64(bitwiseFunc(int(num1.Number), int(num2.Number))))
}
// COMPLEX function takes two arguments, representing the real and the
// imaginary coefficients of a complex number, and from these, creates a
// complex number. The syntax of the function is:
//
// COMPLEX(real_num,i_num,[suffix])
//
func (fn *formulaFuncs) COMPLEX(argsList *list.List) formulaArg {
if argsList.Len() < 2 {
return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX requires at least 2 arguments")
}
if argsList.Len() > 3 {
return newErrorFormulaArg(formulaErrorVALUE, "COMPLEX allows at most 3 arguments")
}
real, i, suffix := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber(), "i"
if real.Type != ArgNumber {
return real
}
if i.Type != ArgNumber {
return i
}
if argsList.Len() == 3 {
if suffix = strings.ToLower(argsList.Back().Value.(formulaArg).Value()); suffix != "i" && suffix != "j" {
return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
}
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(complex(real.Number, i.Number)), suffix))
}
// cmplx2str replace complex number string characters.
func cmplx2str(c, suffix string) string {
if c == "(0+0i)" || c == "(-0+0i)" || c == "(0-0i)" || c == "(-0-0i)" {
return "0"
}
c = strings.TrimPrefix(c, "(")
c = strings.TrimPrefix(c, "+0+")
c = strings.TrimPrefix(c, "-0+")
c = strings.TrimSuffix(c, ")")
c = strings.TrimPrefix(c, "0+")
if strings.HasPrefix(c, "0-") {
c = "-" + strings.TrimPrefix(c, "0-")
}
c = strings.TrimPrefix(c, "0+")
c = strings.TrimSuffix(c, "+0i")
c = strings.TrimSuffix(c, "-0i")
c = strings.NewReplacer("+1i", "+i", "-1i", "-i").Replace(c)
c = strings.Replace(c, "i", suffix, -1)
return c
}
// str2cmplx convert complex number string characters.
func str2cmplx(c string) string {
c = strings.Replace(c, "j", "i", -1)
if c == "i" {
c = "1i"
}
c = strings.NewReplacer("+i", "+1i", "-i", "-1i").Replace(c)
return c
}
// DEC2BIN function converts a decimal number into a Binary (Base 2) number.
// The syntax of the function is:
//
// DEC2BIN(number,[places])
//
func (fn *formulaFuncs) DEC2BIN(argsList *list.List) formulaArg {
return fn.dec2x("DEC2BIN", argsList)
}
// DEC2HEX function converts a decimal number into a Hexadecimal (Base 16)
// number. The syntax of the function is:
//
// DEC2HEX(number,[places])
//
func (fn *formulaFuncs) DEC2HEX(argsList *list.List) formulaArg {
return fn.dec2x("DEC2HEX", argsList)
}
// DEC2OCT function converts a decimal number into an Octal (Base 8) number.
// The syntax of the function is:
//
// DEC2OCT(number,[places])
//
func (fn *formulaFuncs) DEC2OCT(argsList *list.List) formulaArg {
return fn.dec2x("DEC2OCT", argsList)
}
// dec2x is an implementation of the formula function DEC2BIN, DEC2HEX and
// DEC2OCT.
func (fn *formulaFuncs) dec2x(name string, argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
}
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
}
decimal := argsList.Front().Value.(formulaArg).ToNumber()
if decimal.Type != ArgNumber {
return newErrorFormulaArg(formulaErrorVALUE, decimal.Error)
}
maxLimitMap := map[string]float64{
"DEC2BIN": 511,
"HEX2BIN": 511,
"OCT2BIN": 511,
"BIN2HEX": 549755813887,
"DEC2HEX": 549755813887,
"OCT2HEX": 549755813887,
"BIN2OCT": 536870911,
"DEC2OCT": 536870911,
"HEX2OCT": 536870911,
}
minLimitMap := map[string]float64{
"DEC2BIN": -512,
"HEX2BIN": -512,
"OCT2BIN": -512,
"BIN2HEX": -549755813888,
"DEC2HEX": -549755813888,
"OCT2HEX": -549755813888,
"BIN2OCT": -536870912,
"DEC2OCT": -536870912,
"HEX2OCT": -536870912,
}
baseMap := map[string]int{
"DEC2BIN": 2,
"HEX2BIN": 2,
"OCT2BIN": 2,
"BIN2HEX": 16,
"DEC2HEX": 16,
"OCT2HEX": 16,
"BIN2OCT": 8,
"DEC2OCT": 8,
"HEX2OCT": 8,
}
maxLimit, minLimit := maxLimitMap[name], minLimitMap[name]
base := baseMap[name]
if decimal.Number < minLimit || decimal.Number > maxLimit {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
n := int64(decimal.Number)
binary := strconv.FormatUint(*(*uint64)(unsafe.Pointer(&n)), base)
if argsList.Len() == 2 {
places := argsList.Back().Value.(formulaArg).ToNumber()
if places.Type != ArgNumber {
return newErrorFormulaArg(formulaErrorVALUE, places.Error)
}
binaryPlaces := len(binary)
if places.Number < 0 || places.Number > 10 || binaryPlaces > int(places.Number) {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%s%s", strings.Repeat("0", int(places.Number)-binaryPlaces), binary)))
}
if decimal.Number < 0 && len(binary) > 10 {
return newStringFormulaArg(strings.ToUpper(binary[len(binary)-10:]))
}
return newStringFormulaArg(strings.ToUpper(binary))
}
// HEX2BIN function converts a Hexadecimal (Base 16) number into a Binary
// (Base 2) number. The syntax of the function is:
//
// HEX2BIN(number,[places])
//
func (fn *formulaFuncs) HEX2BIN(argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN requires at least 1 argument")
}
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "HEX2BIN allows at most 2 arguments")
}
decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
if decimal.Type != ArgNumber {
return decimal
}
newList.PushBack(decimal)
if argsList.Len() == 2 {
newList.PushBack(argsList.Back().Value.(formulaArg))
}
return fn.dec2x("HEX2BIN", newList)
}
// HEX2DEC function converts a hexadecimal (a base-16 number) into a decimal
// number. The syntax of the function is:
//
// HEX2DEC(number)
//
func (fn *formulaFuncs) HEX2DEC(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "HEX2DEC requires 1 numeric argument")
}
return fn.hex2dec(argsList.Front().Value.(formulaArg).Value())
}
// HEX2OCT function converts a Hexadecimal (Base 16) number into an Octal
// (Base 8) number. The syntax of the function is:
//
// HEX2OCT(number,[places])
//
func (fn *formulaFuncs) HEX2OCT(argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT requires at least 1 argument")
}
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "HEX2OCT allows at most 2 arguments")
}
decimal, newList := fn.hex2dec(argsList.Front().Value.(formulaArg).Value()), list.New()
if decimal.Type != ArgNumber {
return decimal
}
newList.PushBack(decimal)
if argsList.Len() == 2 {
newList.PushBack(argsList.Back().Value.(formulaArg))
}
return fn.dec2x("HEX2OCT", newList)
}
// hex2dec is an implementation of the formula function HEX2DEC.
func (fn *formulaFuncs) hex2dec(number string) formulaArg {
decimal, length := 0.0, len(number)
for i := length; i > 0; i-- {
num, err := strconv.ParseInt(string(number[length-i]), 16, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
if i == 10 && string(number[length-i]) == "F" {
decimal += math.Pow(-16.0, float64(i-1))
continue
}
decimal += float64(num) * math.Pow(16.0, float64(i-1))
}
return newNumberFormulaArg(decimal)
}
// IMABS function returns the absolute value (the modulus) of a complex
// number. The syntax of the function is:
//
// IMABS(inumber)
//
func (fn *formulaFuncs) IMABS(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMABS requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
return newNumberFormulaArg(cmplx.Abs(inumber))
}
// IMAGINARY function returns the imaginary coefficient of a supplied complex
// number. The syntax of the function is:
//
// IMAGINARY(inumber)
//
func (fn *formulaFuncs) IMAGINARY(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMAGINARY requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
return newNumberFormulaArg(imag(inumber))
}
// IMARGUMENT function returns the phase (also called the argument) of a
// supplied complex number. The syntax of the function is:
//
// IMARGUMENT(inumber)
//
func (fn *formulaFuncs) IMARGUMENT(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMARGUMENT requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
return newNumberFormulaArg(cmplx.Phase(inumber))
}
// IMCONJUGATE function returns the complex conjugate of a supplied complex
// number. The syntax of the function is:
//
// IMCONJUGATE(inumber)
//
func (fn *formulaFuncs) IMCONJUGATE(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMCONJUGATE requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Conj(inumber)), "i"))
}
// IMCOS function returns the cosine of a supplied complex number. The syntax
// of the function is:
//
// IMCOS(inumber)
//
func (fn *formulaFuncs) IMCOS(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMCOS requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cos(inumber)), "i"))
}
// IMCOSH function returns the hyperbolic cosine of a supplied complex number. The syntax
// of the function is:
//
// IMCOSH(inumber)
//
func (fn *formulaFuncs) IMCOSH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMCOSH requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cosh(inumber)), "i"))
}
// IMCOT function returns the cotangent of a supplied complex number. The syntax
// of the function is:
//
// IMCOT(inumber)
//
func (fn *formulaFuncs) IMCOT(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMCOT requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Cot(inumber)), "i"))
}
// IMCSC function returns the cosecant of a supplied complex number. The syntax
// of the function is:
//
// IMCSC(inumber)
//
func (fn *formulaFuncs) IMCSC(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMCSC requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
num := 1 / cmplx.Sin(inumber)
if cmplx.IsInf(num) {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
}
// IMCSCH function returns the hyperbolic cosecant of a supplied complex
// number. The syntax of the function is:
//
// IMCSCH(inumber)
//
func (fn *formulaFuncs) IMCSCH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMCSCH requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
num := 1 / cmplx.Sinh(inumber)
if cmplx.IsInf(num) {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
}
// IMDIV function calculates the quotient of two complex numbers (i.e. divides
// one complex number by another). The syntax of the function is:
//
// IMDIV(inumber1,inumber2)
//
func (fn *formulaFuncs) IMDIV(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "IMDIV requires 2 arguments")
}
inumber1, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
inumber2, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
num := inumber1 / inumber2
if cmplx.IsInf(num) {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
}
// IMEXP function returns the exponential of a supplied complex number. The
// syntax of the function is:
//
// IMEXP(inumber)
//
func (fn *formulaFuncs) IMEXP(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMEXP requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Exp(inumber)), "i"))
}
// IMLN function returns the natural logarithm of a supplied complex number.
// The syntax of the function is:
//
// IMLN(inumber)
//
func (fn *formulaFuncs) IMLN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMLN requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
num := cmplx.Log(inumber)
if cmplx.IsInf(num) {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
}
// IMLOG10 function returns the common (base 10) logarithm of a supplied
// complex number. The syntax of the function is:
//
// IMLOG10(inumber)
//
func (fn *formulaFuncs) IMLOG10(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMLOG10 requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
num := cmplx.Log10(inumber)
if cmplx.IsInf(num) {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
}
// IMLOG2 function calculates the base 2 logarithm of a supplied complex
// number. The syntax of the function is:
//
// IMLOG2(inumber)
//
func (fn *formulaFuncs) IMLOG2(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMLOG2 requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
num := cmplx.Log(inumber)
if cmplx.IsInf(num) {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(num/cmplx.Log(2)), "i"))
}
// IMPOWER function returns a supplied complex number, raised to a given
// power. The syntax of the function is:
//
// IMPOWER(inumber,number)
//
func (fn *formulaFuncs) IMPOWER(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "IMPOWER requires 2 arguments")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
number, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
if inumber == 0 && number == 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
num := cmplx.Pow(inumber, number)
if cmplx.IsInf(num) {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(num), "i"))
}
// IMPRODUCT function calculates the product of two or more complex numbers.
// The syntax of the function is:
//
// IMPRODUCT(number1,[number2],...)
//
func (fn *formulaFuncs) IMPRODUCT(argsList *list.List) formulaArg {
product := complex128(1)
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg)
switch token.Type {
case ArgString:
if token.Value() == "" {
continue
}
val, err := strconv.ParseComplex(str2cmplx(token.Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
product = product * val
case ArgNumber:
product = product * complex(token.Number, 0)
case ArgMatrix:
for _, row := range token.Matrix {
for _, value := range row {
if value.Value() == "" {
continue
}
val, err := strconv.ParseComplex(str2cmplx(value.Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
product = product * val
}
}
}
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(product), "i"))
}
// IMREAL function returns the real coefficient of a supplied complex number.
// The syntax of the function is:
//
// IMREAL(inumber)
//
func (fn *formulaFuncs) IMREAL(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMREAL requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(real(inumber)), "i"))
}
// IMSEC function returns the secant of a supplied complex number. The syntax
// of the function is:
//
// IMSEC(inumber)
//
func (fn *formulaFuncs) IMSEC(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMSEC requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(1/cmplx.Cos(inumber)), "i"))
}
// IMSECH function returns the hyperbolic secant of a supplied complex number.
// The syntax of the function is:
//
// IMSECH(inumber)
//
func (fn *formulaFuncs) IMSECH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMSECH requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(1/cmplx.Cosh(inumber)), "i"))
}
// IMSIN function returns the Sine of a supplied complex number. The syntax of
// the function is:
//
// IMSIN(inumber)
//
func (fn *formulaFuncs) IMSIN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMSIN requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sin(inumber)), "i"))
}
// IMSINH function returns the hyperbolic sine of a supplied complex number.
// The syntax of the function is:
//
// IMSINH(inumber)
//
func (fn *formulaFuncs) IMSINH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMSINH requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sinh(inumber)), "i"))
}
// IMSQRT function returns the square root of a supplied complex number. The
// syntax of the function is:
//
// IMSQRT(inumber)
//
func (fn *formulaFuncs) IMSQRT(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMSQRT requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Sqrt(inumber)), "i"))
}
// IMSUB function calculates the difference between two complex numbers
// (i.e. subtracts one complex number from another). The syntax of the
// function is:
//
// IMSUB(inumber1,inumber2)
//
func (fn *formulaFuncs) IMSUB(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "IMSUB requires 2 arguments")
}
i1, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
i2, err := strconv.ParseComplex(str2cmplx(argsList.Back().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(i1-i2), "i"))
}
// IMSUM function calculates the sum of two or more complex numbers. The
// syntax of the function is:
//
// IMSUM(inumber1,inumber2,...)
//
func (fn *formulaFuncs) IMSUM(argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMSUM requires at least 1 argument")
}
var result complex128
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg)
num, err := strconv.ParseComplex(str2cmplx(token.Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
result += num
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(result), "i"))
}
// IMTAN function returns the tangent of a supplied complex number. The syntax
// of the function is:
//
// IMTAN(inumber)
//
func (fn *formulaFuncs) IMTAN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IMTAN requires 1 argument")
}
inumber, err := strconv.ParseComplex(str2cmplx(argsList.Front().Value.(formulaArg).Value()), 128)
if err != nil {
return newErrorFormulaArg(formulaErrorNUM, err.Error())
}
return newStringFormulaArg(cmplx2str(fmt.Sprint(cmplx.Tan(inumber)), "i"))
}
// OCT2BIN function converts an Octal (Base 8) number into a Binary (Base 2)
// number. The syntax of the function is:
//
// OCT2BIN(number,[places])
//
func (fn *formulaFuncs) OCT2BIN(argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN requires at least 1 argument")
}
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "OCT2BIN allows at most 2 arguments")
}
token := argsList.Front().Value.(formulaArg)
number := token.ToNumber()
if number.Type != ArgNumber {
return newErrorFormulaArg(formulaErrorVALUE, number.Error)
}
decimal, newList := fn.oct2dec(token.Value()), list.New()
newList.PushBack(decimal)
if argsList.Len() == 2 {
newList.PushBack(argsList.Back().Value.(formulaArg))
}
return fn.dec2x("OCT2BIN", newList)
}
// OCT2DEC function converts an Octal (a base-8 number) into a decimal number.
// The syntax of the function is:
//
// OCT2DEC(number)
//
func (fn *formulaFuncs) OCT2DEC(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "OCT2DEC requires 1 numeric argument")
}
token := argsList.Front().Value.(formulaArg)
number := token.ToNumber()
if number.Type != ArgNumber {
return newErrorFormulaArg(formulaErrorVALUE, number.Error)
}
return fn.oct2dec(token.Value())
}
// OCT2HEX function converts an Octal (Base 8) number into a Hexadecimal
// (Base 16) number. The syntax of the function is:
//
// OCT2HEX(number,[places])
//
func (fn *formulaFuncs) OCT2HEX(argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX requires at least 1 argument")
}
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "OCT2HEX allows at most 2 arguments")
}
token := argsList.Front().Value.(formulaArg)
number := token.ToNumber()
if number.Type != ArgNumber {
return newErrorFormulaArg(formulaErrorVALUE, number.Error)
}
decimal, newList := fn.oct2dec(token.Value()), list.New()
newList.PushBack(decimal)
if argsList.Len() == 2 {
newList.PushBack(argsList.Back().Value.(formulaArg))
}
return fn.dec2x("OCT2HEX", newList)
}
// oct2dec is an implementation of the formula function OCT2DEC.
func (fn *formulaFuncs) oct2dec(number string) formulaArg {
decimal, length := 0.0, len(number)
for i := length; i > 0; i-- {
num, _ := strconv.Atoi(string(number[length-i]))
if i == 10 && string(number[length-i]) == "7" {
decimal += math.Pow(-8.0, float64(i-1))
continue
}
decimal += float64(num) * math.Pow(8.0, float64(i-1))
}
return newNumberFormulaArg(decimal)
}
// Math and Trigonometric Functions
// ABS function returns the absolute value of any supplied number. The syntax
// of the function is:
//
// ABS(number)
//
func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument")
}
arg := argsList.Front().Value.(formulaArg).ToNumber()
if arg.Type == ArgError {
return arg
}
return newNumberFormulaArg(math.Abs(arg.Number))
}
// ACOS function calculates the arccosine (i.e. the inverse cosine) of a given
// number, and returns an angle, in radians, between 0 and π. The syntax of
// the function is:
//
// ACOS(number)
//
func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument")
}
arg := argsList.Front().Value.(formulaArg).ToNumber()
if arg.Type == ArgError {
return arg
}
return newNumberFormulaArg(math.Acos(arg.Number))
}
// ACOSH function calculates the inverse hyperbolic cosine of a supplied number.
// of the function is:
//
// ACOSH(number)
//
func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument")
}
arg := argsList.Front().Value.(formulaArg).ToNumber()
if arg.Type == ArgError {
return arg
}
return newNumberFormulaArg(math.Acosh(arg.Number))
}
// ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a
// given number, and returns an angle, in radians, between 0 and π. The syntax
// of the function is:
//
// ACOT(number)
//
func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument")
}
arg := argsList.Front().Value.(formulaArg).ToNumber()
if arg.Type == ArgError {
return arg
}
return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number))
}
// ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied
// value. The syntax of the function is:
//
// ACOTH(number)
//
func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument")
}
arg := argsList.Front().Value.(formulaArg).ToNumber()
if arg.Type == ArgError {
return arg
}
return newNumberFormulaArg(math.Atanh(1 / arg.Number))
}
// ARABIC function converts a Roman numeral into an Arabic numeral. The syntax
// of the function is:
//
// ARABIC(text)
//
func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument")
}
text := argsList.Front().Value.(formulaArg).Value()
if len(text) > 255 {
return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
}
text = strings.ToUpper(text)
number, actualStart, index, isNegative := 0, 0, len(text)-1, false
startIndex, subtractNumber, currentPartValue, currentCharValue, prevCharValue := 0, 0, 0, 0, -1
for index >= 0 && text[index] == ' ' {
index--
}
for actualStart <= index && text[actualStart] == ' ' {
actualStart++
}
if actualStart <= index && text[actualStart] == '-' {
isNegative = true
actualStart++
}
charMap := map[rune]int{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
for index >= actualStart {
startIndex = index
startChar := text[startIndex]
index--
for index >= actualStart && (text[index]|' ') == startChar {
index--
}
currentCharValue = charMap[rune(startChar)]
currentPartValue = (startIndex - index) * currentCharValue
if currentCharValue >= prevCharValue {
number += currentPartValue - subtractNumber
prevCharValue = currentCharValue
subtractNumber = 0
continue
}
subtractNumber += currentPartValue
}
if subtractNumber != 0 {
number -= subtractNumber
}
if isNegative {
number = -number
}
return newNumberFormulaArg(float64(number))
}
// ASIN function calculates the arcsine (i.e. the inverse sine) of a given
// number, and returns an angle, in radians, between -π/2 and π/2. The syntax
// of the function is:
//
// ASIN(number)
//
func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument")
}
arg := argsList.Front().Value.(formulaArg).ToNumber()
if arg.Type == ArgError {
return arg
}
return newNumberFormulaArg(math.Asin(arg.Number))
}
// ASINH function calculates the inverse hyperbolic sine of a supplied number.
// The syntax of the function is:
//
// ASINH(number)
//
func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument")
}
arg := argsList.Front().Value.(formulaArg).ToNumber()
if arg.Type == ArgError {
return arg
}
return newNumberFormulaArg(math.Asinh(arg.Number))
}
// ATAN function calculates the arctangent (i.e. the inverse tangent) of a
// given number, and returns an angle, in radians, between -π/2 and +π/2. The
// syntax of the function is:
//
// ATAN(number)
//
func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument")
}
arg := argsList.Front().Value.(formulaArg).ToNumber()
if arg.Type == ArgError {
return arg
}
return newNumberFormulaArg(math.Atan(arg.Number))
}
// ATANH function calculates the inverse hyperbolic tangent of a supplied
// number. The syntax of the function is:
//
// ATANH(number)
//
func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument")
}
arg := argsList.Front().Value.(formulaArg).ToNumber()
if arg.Type == ArgError {
return arg
}
return newNumberFormulaArg(math.Atanh(arg.Number))
}
// ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a
// given set of x and y coordinates, and returns an angle, in radians, between
// -π/2 and +π/2. The syntax of the function is:
//
// ATAN2(x_num,y_num)
//
func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments")
}
x := argsList.Back().Value.(formulaArg).ToNumber()
if x.Type == ArgError {
return x
}
y := argsList.Front().Value.(formulaArg).ToNumber()
if y.Type == ArgError {
return y
}
return newNumberFormulaArg(math.Atan2(x.Number, y.Number))
}
// BASE function converts a number into a supplied base (radix), and returns a
// text representation of the calculated value. The syntax of the function is:
//
// BASE(number,radix,[min_length])
//
func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg {
if argsList.Len() < 2 {
return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments")
}
if argsList.Len() > 3 {
return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments")
}
var minLength int
var err error
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
radix := argsList.Front().Next().Value.(formulaArg).ToNumber()
if radix.Type == ArgError {
return radix
}
if int(radix.Number) < 2 || int(radix.Number) > 36 {
return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36")
}
if argsList.Len() > 2 {
if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
}
result := strconv.FormatInt(int64(number.Number), int(radix.Number))
if len(result) < minLength {
result = strings.Repeat("0", minLength-len(result)) + result
}
return newStringFormulaArg(strings.ToUpper(result))
}
// CEILING function rounds a supplied number away from zero, to the nearest
// multiple of a given number. The syntax of the function is:
//
// CEILING(number,significance)
//
func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument")
}
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments")
}
number, significance, res := 0.0, 1.0, 0.0
n := argsList.Front().Value.(formulaArg).ToNumber()
if n.Type == ArgError {
return n
}
number = n.Number
if number < 0 {
significance = -1
}
if argsList.Len() > 1 {
s := argsList.Back().Value.(formulaArg).ToNumber()
if s.Type == ArgError {
return s
}
significance = s.Number
}
if significance < 0 && number > 0 {
return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid")
}
if argsList.Len() == 1 {
return newNumberFormulaArg(math.Ceil(number))
}
number, res = math.Modf(number / significance)
if res > 0 {
number++
}
return newNumberFormulaArg(number * significance)
}
// CEILINGdotMATH function rounds a supplied number up to a supplied multiple
// of significance. The syntax of the function is:
//
// CEILING.MATH(number,[significance],[mode])
//
func (fn *formulaFuncs) CEILINGdotMATH(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument")
}
if argsList.Len() > 3 {
return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments")
}
number, significance, mode := 0.0, 1.0, 1.0
n := argsList.Front().Value.(formulaArg).ToNumber()
if n.Type == ArgError {
return n
}
number = n.Number
if number < 0 {
significance = -1
}
if argsList.Len() > 1 {
s := argsList.Front().Next().Value.(formulaArg).ToNumber()
if s.Type == ArgError {
return s
}
significance = s.Number
}
if argsList.Len() == 1 {
return newNumberFormulaArg(math.Ceil(number))
}
if argsList.Len() > 2 {
m := argsList.Back().Value.(formulaArg).ToNumber()
if m.Type == ArgError {
return m
}
mode = m.Number
}
val, res := math.Modf(number / significance)
if res != 0 {
if number > 0 {
val++
} else if mode < 0 {
val--
}
}
return newNumberFormulaArg(val * significance)
}
// CEILINGdotPRECISE function rounds a supplied number up (regardless of the
// number's sign), to the nearest multiple of a given number. The syntax of
// the function is:
//
// CEILING.PRECISE(number,[significance])
//
func (fn *formulaFuncs) CEILINGdotPRECISE(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument")
}
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments")
}
number, significance := 0.0, 1.0
n := argsList.Front().Value.(formulaArg).ToNumber()
if n.Type == ArgError {
return n
}
number = n.Number
if number < 0 {
significance = -1
}
if argsList.Len() == 1 {
return newNumberFormulaArg(math.Ceil(number))
}
if argsList.Len() > 1 {
s := argsList.Back().Value.(formulaArg).ToNumber()
if s.Type == ArgError {
return s
}
significance = s.Number
significance = math.Abs(significance)
if significance == 0 {
return newNumberFormulaArg(significance)
}
}
val, res := math.Modf(number / significance)
if res != 0 {
if number > 0 {
val++
}
}
return newNumberFormulaArg(val * significance)
}
// COMBIN function calculates the number of combinations (in any order) of a
// given number objects from a set. The syntax of the function is:
//
// COMBIN(number,number_chosen)
//
func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument")
}
number, chosen, val := 0.0, 0.0, 1.0
n := argsList.Front().Value.(formulaArg).ToNumber()
if n.Type == ArgError {
return n
}
number = n.Number
c := argsList.Back().Value.(formulaArg).ToNumber()
if c.Type == ArgError {
return c
}
chosen = c.Number
number, chosen = math.Trunc(number), math.Trunc(chosen)
if chosen > number {
return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen")
}
if chosen == number || chosen == 0 {
return newNumberFormulaArg(1)
}
for c := float64(1); c <= chosen; c++ {
val *= (number + 1 - c) / c
}
return newNumberFormulaArg(math.Ceil(val))
}
// COMBINA function calculates the number of combinations, with repetitions,
// of a given number objects from a set. The syntax of the function is:
//
// COMBINA(number,number_chosen)
//
func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument")
}
var number, chosen float64
n := argsList.Front().Value.(formulaArg).ToNumber()
if n.Type == ArgError {
return n
}
number = n.Number
c := argsList.Back().Value.(formulaArg).ToNumber()
if c.Type == ArgError {
return c
}
chosen = c.Number
number, chosen = math.Trunc(number), math.Trunc(chosen)
if number < chosen {
return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen")
}
if number == 0 {
return newNumberFormulaArg(number)
}
args := list.New()
args.PushBack(formulaArg{
String: fmt.Sprintf("%g", number+chosen-1),
Type: ArgString,
})
args.PushBack(formulaArg{
String: fmt.Sprintf("%g", number-1),
Type: ArgString,
})
return fn.COMBIN(args)
}
// COS function calculates the cosine of a given angle. The syntax of the
// function is:
//
// COS(number)
//
func (fn *formulaFuncs) COS(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument")
}
val := argsList.Front().Value.(formulaArg).ToNumber()
if val.Type == ArgError {
return val
}
return newNumberFormulaArg(math.Cos(val.Number))
}
// COSH function calculates the hyperbolic cosine (cosh) of a supplied number.
// The syntax of the function is:
//
// COSH(number)
//
func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument")
}
val := argsList.Front().Value.(formulaArg).ToNumber()
if val.Type == ArgError {
return val
}
return newNumberFormulaArg(math.Cosh(val.Number))
}
// COT function calculates the cotangent of a given angle. The syntax of the
// function is:
//
// COT(number)
//
func (fn *formulaFuncs) COT(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument")
}
val := argsList.Front().Value.(formulaArg).ToNumber()
if val.Type == ArgError {
return val
}
if val.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
return newNumberFormulaArg(1 / math.Tan(val.Number))
}
// COTH function calculates the hyperbolic cotangent (coth) of a supplied
// angle. The syntax of the function is:
//
// COTH(number)
//
func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument")
}
val := argsList.Front().Value.(formulaArg).ToNumber()
if val.Type == ArgError {
return val
}
if val.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
return newNumberFormulaArg((math.Exp(val.Number) + math.Exp(-val.Number)) / (math.Exp(val.Number) - math.Exp(-val.Number)))
}
// CSC function calculates the cosecant of a given angle. The syntax of the
// function is:
//
// CSC(number)
//
func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument")
}
val := argsList.Front().Value.(formulaArg).ToNumber()
if val.Type == ArgError {
return val
}
if val.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
return newNumberFormulaArg(1 / math.Sin(val.Number))
}
// CSCH function calculates the hyperbolic cosecant (csch) of a supplied
// angle. The syntax of the function is:
//
// CSCH(number)
//
func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument")
}
val := argsList.Front().Value.(formulaArg).ToNumber()
if val.Type == ArgError {
return val
}
if val.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
return newNumberFormulaArg(1 / math.Sinh(val.Number))
}
// DECIMAL function converts a text representation of a number in a specified
// base, into a decimal value. The syntax of the function is:
//
// DECIMAL(text,radix)
//
func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments")
}
var text = argsList.Front().Value.(formulaArg).String
var radix int
var err error
radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) {
text = text[2:]
}
val, err := strconv.ParseInt(text, radix, 64)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
return newNumberFormulaArg(float64(val))
}
// DEGREES function converts radians into degrees. The syntax of the function
// is:
//
// DEGREES(angle)
//
func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument")
}
val := argsList.Front().Value.(formulaArg).ToNumber()
if val.Type == ArgError {
return val
}
if val.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
return newNumberFormulaArg(180.0 / math.Pi * val.Number)
}
// EVEN function rounds a supplied number away from zero (i.e. rounds a
// positive number up and a negative number down), to the next even number.
// The syntax of the function is:
//
// EVEN(number)
//
func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
sign := math.Signbit(number.Number)
m, frac := math.Modf(number.Number / 2)
val := m * 2
if frac != 0 {
if !sign {
val += 2
} else {
val -= 2
}
}
return newNumberFormulaArg(val)
}
// EXP function calculates the value of the mathematical constant e, raised to
// the power of a given number. The syntax of the function is:
//
// EXP(number)
//
func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number.Number))))
}
// fact returns the factorial of a supplied number.
func fact(number float64) float64 {
val := float64(1)
for i := float64(2); i <= number; i++ {
val *= i
}
return val
}
// FACT function returns the factorial of a supplied number. The syntax of the
// function is:
//
// FACT(number)
//
func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
if number.Number < 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return newNumberFormulaArg(fact(number.Number))
}
// FACTDOUBLE function returns the double factorial of a supplied number. The
// syntax of the function is:
//
// FACTDOUBLE(number)
//
func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument")
}
val := 1.0
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
if number.Number < 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
for i := math.Trunc(number.Number); i > 1; i -= 2 {
val *= i
}
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val)))
}
// FLOOR function rounds a supplied number towards zero to the nearest
// multiple of a specified significance. The syntax of the function is:
//
// FLOOR(number,significance)
//
func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
significance := argsList.Back().Value.(formulaArg).ToNumber()
if significance.Type == ArgError {
return significance
}
if significance.Number < 0 && number.Number >= 0 {
return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR")
}
val := number.Number
val, res := math.Modf(val / significance.Number)
if res != 0 {
if number.Number < 0 && res < 0 {
val--
}
}
return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance.Number)))
}
// FLOORdotMATH function rounds a supplied number down to a supplied multiple
// of significance. The syntax of the function is:
//
// FLOOR.MATH(number,[significance],[mode])
//
func (fn *formulaFuncs) FLOORdotMATH(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument")
}
if argsList.Len() > 3 {
return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments")
}
significance, mode := 1.0, 1.0
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
if number.Number < 0 {
significance = -1
}
if argsList.Len() > 1 {
s := argsList.Front().Next().Value.(formulaArg).ToNumber()
if s.Type == ArgError {
return s
}
significance = s.Number
}
if argsList.Len() == 1 {
return newNumberFormulaArg(math.Floor(number.Number))
}
if argsList.Len() > 2 {
m := argsList.Back().Value.(formulaArg).ToNumber()
if m.Type == ArgError {
return m
}
mode = m.Number
}
val, res := math.Modf(number.Number / significance)
if res != 0 && number.Number < 0 && mode > 0 {
val--
}
return newNumberFormulaArg(val * significance)
}
// FLOORdotPRECISE function rounds a supplied number down to a supplied
// multiple of significance. The syntax of the function is:
//
// FLOOR.PRECISE(number,[significance])
//
func (fn *formulaFuncs) FLOORdotPRECISE(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument")
}
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments")
}
var significance float64
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
if number.Number < 0 {
significance = -1
}
if argsList.Len() == 1 {
return newNumberFormulaArg(math.Floor(number.Number))
}
if argsList.Len() > 1 {
s := argsList.Back().Value.(formulaArg).ToNumber()
if s.Type == ArgError {
return s
}
significance = s.Number
significance = math.Abs(significance)
if significance == 0 {
return newNumberFormulaArg(significance)
}
}
val, res := math.Modf(number.Number / significance)
if res != 0 {
if number.Number < 0 {
val--
}
}
return newNumberFormulaArg(val * significance)
}
// gcd returns the greatest common divisor of two supplied integers.
func gcd(x, y float64) float64 {
x, y = math.Trunc(x), math.Trunc(y)
if x == 0 {
return y
}
if y == 0 {
return x
}
for x != y {
if x > y {
x = x - y
} else {
y = y - x
}
}
return x
}
// GCD function returns the greatest common divisor of two or more supplied
// integers. The syntax of the function is:
//
// GCD(number1,[number2],...)
//
func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument")
}
var (
val float64
nums = []float64{}
)
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg)
switch token.Type {
case ArgString:
num := token.ToNumber()
if num.Type == ArgError {
return num
}
val = num.Number
case ArgNumber:
val = token.Number
}
nums = append(nums, val)
}
if nums[0] < 0 {
return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
}
if len(nums) == 1 {
return newNumberFormulaArg(nums[0])
}
cd := nums[0]
for i := 1; i < len(nums); i++ {
if nums[i] < 0 {
return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments")
}
cd = gcd(cd, nums[i])
}
return newNumberFormulaArg(cd)
}
// INT function truncates a supplied number down to the closest integer. The
// syntax of the function is:
//
// INT(number)
//
func (fn *formulaFuncs) INT(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
val, frac := math.Modf(number.Number)
if frac < 0 {
val--
}
return newNumberFormulaArg(val)
}
// ISOdotCEILING function rounds a supplied number up (regardless of the
// number's sign), to the nearest multiple of a supplied significance. The
// syntax of the function is:
//
// ISO.CEILING(number,[significance])
//
func (fn *formulaFuncs) ISOdotCEILING(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument")
}
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments")
}
var significance float64
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
if number.Number < 0 {
significance = -1
}
if argsList.Len() == 1 {
return newNumberFormulaArg(math.Ceil(number.Number))
}
if argsList.Len() > 1 {
s := argsList.Back().Value.(formulaArg).ToNumber()
if s.Type == ArgError {
return s
}
significance = s.Number
significance = math.Abs(significance)
if significance == 0 {
return newNumberFormulaArg(significance)
}
}
val, res := math.Modf(number.Number / significance)
if res != 0 {
if number.Number > 0 {
val++
}
}
return newNumberFormulaArg(val * significance)
}
// lcm returns the least common multiple of two supplied integers.
func lcm(a, b float64) float64 {
a = math.Trunc(a)
b = math.Trunc(b)
if a == 0 && b == 0 {
return 0
}
return a * b / gcd(a, b)
}
// LCM function returns the least common multiple of two or more supplied
// integers. The syntax of the function is:
//
// LCM(number1,[number2],...)
//
func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument")
}
var (
val float64
nums = []float64{}
err error
)
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg)
switch token.Type {
case ArgString:
if token.String == "" {
continue
}
if val, err = strconv.ParseFloat(token.String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
case ArgNumber:
val = token.Number
}
nums = append(nums, val)
}
if nums[0] < 0 {
return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
}
if len(nums) == 1 {
return newNumberFormulaArg(nums[0])
}
cm := nums[0]
for i := 1; i < len(nums); i++ {
if nums[i] < 0 {
return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments")
}
cm = lcm(cm, nums[i])
}
return newNumberFormulaArg(cm)
}
// LN function calculates the natural logarithm of a given number. The syntax
// of the function is:
//
// LN(number)
//
func (fn *formulaFuncs) LN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newNumberFormulaArg(math.Log(number.Number))
}
// LOG function calculates the logarithm of a given number, to a supplied
// base. The syntax of the function is:
//
// LOG(number,[base])
//
func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument")
}
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments")
}
base := 10.0
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
if argsList.Len() > 1 {
b := argsList.Back().Value.(formulaArg).ToNumber()
if b.Type == ArgError {
return b
}
base = b.Number
}
if number.Number == 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
}
if base == 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV)
}
if base == 1 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
return newNumberFormulaArg(math.Log(number.Number) / math.Log(base))
}
// LOG10 function calculates the base 10 logarithm of a given number. The
// syntax of the function is:
//
// LOG10(number)
//
func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newNumberFormulaArg(math.Log10(number.Number))
}
// minor function implement a minor of a matrix A is the determinant of some
// smaller square matrix.
func minor(sqMtx [][]float64, idx int) [][]float64 {
ret := [][]float64{}
for i := range sqMtx {
if i == 0 {
continue
}
row := []float64{}
for j := range sqMtx {
if j == idx {
continue
}
row = append(row, sqMtx[i][j])
}
ret = append(ret, row)
}
return ret
}
// det determinant of the 2x2 matrix.
func det(sqMtx [][]float64) float64 {
if len(sqMtx) == 2 {
m00 := sqMtx[0][0]
m01 := sqMtx[0][1]
m10 := sqMtx[1][0]
m11 := sqMtx[1][1]
return m00*m11 - m10*m01
}
var res, sgn float64 = 0, 1
for j := range sqMtx {
res += sgn * sqMtx[0][j] * det(minor(sqMtx, j))
sgn *= -1
}
return res
}
// MDETERM calculates the determinant of a square matrix. The
// syntax of the function is:
//
// MDETERM(array)
//
func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) {
var (
num float64
numMtx = [][]float64{}
err error
strMtx [][]formulaArg
)
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "MDETERM requires at least 1 argument")
}
strMtx = argsList.Front().Value.(formulaArg).Matrix
var rows = len(strMtx)
for _, row := range argsList.Front().Value.(formulaArg).Matrix {
if len(row) != rows {
return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
}
numRow := []float64{}
for _, ele := range row {
if num, err = strconv.ParseFloat(ele.String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
numRow = append(numRow, num)
}
numMtx = append(numMtx, numRow)
}
return newNumberFormulaArg(det(numMtx))
}
// MOD function returns the remainder of a division between two supplied
// numbers. The syntax of the function is:
//
// MOD(number,divisor)
//
func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
divisor := argsList.Back().Value.(formulaArg).ToNumber()
if divisor.Type == ArgError {
return divisor
}
if divisor.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero")
}
trunc, rem := math.Modf(number.Number / divisor.Number)
if rem < 0 {
trunc--
}
return newNumberFormulaArg(number.Number - divisor.Number*trunc)
}
// MROUND function rounds a supplied number up or down to the nearest multiple
// of a given number. The syntax of the function is:
//
// MROUND(number,multiple)
//
func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments")
}
n := argsList.Front().Value.(formulaArg).ToNumber()
if n.Type == ArgError {
return n
}
multiple := argsList.Back().Value.(formulaArg).ToNumber()
if multiple.Type == ArgError {
return multiple
}
if multiple.Number == 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
if multiple.Number < 0 && n.Number > 0 ||
multiple.Number > 0 && n.Number < 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
number, res := math.Modf(n.Number / multiple.Number)
if math.Trunc(res+0.5) > 0 {
number++
}
return newNumberFormulaArg(number * multiple.Number)
}
// MULTINOMIAL function calculates the ratio of the factorial of a sum of
// supplied values to the product of factorials of those values. The syntax of
// the function is:
//
// MULTINOMIAL(number1,[number2],...)
//
func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg {
val, num, denom := 0.0, 0.0, 1.0
var err error
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg)
switch token.Type {
case ArgString:
if token.String == "" {
continue
}
if val, err = strconv.ParseFloat(token.String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
case ArgNumber:
val = token.Number
}
num += val
denom *= fact(val)
}
return newNumberFormulaArg(fact(num) / denom)
}
// MUNIT function returns the unit matrix for a specified dimension. The
// syntax of the function is:
//
// MUNIT(dimension)
//
func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument")
}
dimension := argsList.Back().Value.(formulaArg).ToNumber()
if dimension.Type == ArgError || dimension.Number < 0 {
return newErrorFormulaArg(formulaErrorVALUE, dimension.Error)
}
matrix := make([][]formulaArg, 0, int(dimension.Number))
for i := 0; i < int(dimension.Number); i++ {
row := make([]formulaArg, int(dimension.Number))
for j := 0; j < int(dimension.Number); j++ {
if i == j {
row[j] = newNumberFormulaArg(1.0)
} else {
row[j] = newNumberFormulaArg(0.0)
}
}
matrix = append(matrix, row)
}
return newMatrixFormulaArg(matrix)
}
// ODD function ounds a supplied number away from zero (i.e. rounds a positive
// number up and a negative number down), to the next odd number. The syntax
// of the function is:
//
// ODD(number)
//
func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument")
}
number := argsList.Back().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
if number.Number == 0 {
return newNumberFormulaArg(1)
}
sign := math.Signbit(number.Number)
m, frac := math.Modf((number.Number - 1) / 2)
val := m*2 + 1
if frac != 0 {
if !sign {
val += 2
} else {
val -= 2
}
}
return newNumberFormulaArg(val)
}
// PI function returns the value of the mathematical constant π (pi), accurate
// to 15 digits (14 decimal places). The syntax of the function is:
//
// PI()
//
func (fn *formulaFuncs) PI(argsList *list.List) formulaArg {
if argsList.Len() != 0 {
return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments")
}
return newNumberFormulaArg(math.Pi)
}
// POWER function calculates a given number, raised to a supplied power.
// The syntax of the function is:
//
// POWER(number,power)
//
func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments")
}
x := argsList.Front().Value.(formulaArg).ToNumber()
if x.Type == ArgError {
return x
}
y := argsList.Back().Value.(formulaArg).ToNumber()
if y.Type == ArgError {
return y
}
if x.Number == 0 && y.Number == 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
if x.Number == 0 && y.Number < 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
return newNumberFormulaArg(math.Pow(x.Number, y.Number))
}
// PRODUCT function returns the product (multiplication) of a supplied set of
// numerical values. The syntax of the function is:
//
// PRODUCT(number1,[number2],...)
//
func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg {
val, product := 0.0, 1.0
var err error
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg)
switch token.Type {
case ArgUnknown:
continue
case ArgString:
if token.String == "" {
continue
}
if val, err = strconv.ParseFloat(token.String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
product = product * val
case ArgNumber:
product = product * token.Number
case ArgMatrix:
for _, row := range token.Matrix {
for _, value := range row {
if value.String == "" {
continue
}
if val, err = strconv.ParseFloat(value.String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
product = product * val
}
}
}
}
return newNumberFormulaArg(product)
}
// QUOTIENT function returns the integer portion of a division between two
// supplied numbers. The syntax of the function is:
//
// QUOTIENT(numerator,denominator)
//
func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments")
}
x := argsList.Front().Value.(formulaArg).ToNumber()
if x.Type == ArgError {
return x
}
y := argsList.Back().Value.(formulaArg).ToNumber()
if y.Type == ArgError {
return y
}
if y.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
return newNumberFormulaArg(math.Trunc(x.Number / y.Number))
}
// RADIANS function converts radians into degrees. The syntax of the function is:
//
// RADIANS(angle)
//
func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument")
}
angle := argsList.Front().Value.(formulaArg).ToNumber()
if angle.Type == ArgError {
return angle
}
return newNumberFormulaArg(math.Pi / 180.0 * angle.Number)
}
// RAND function generates a random real number between 0 and 1. The syntax of
// the function is:
//
// RAND()
//
func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg {
if argsList.Len() != 0 {
return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments")
}
return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64())
}
// RANDBETWEEN function generates a random integer between two supplied
// integers. The syntax of the function is:
//
// RANDBETWEEN(bottom,top)
//
func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments")
}
bottom := argsList.Front().Value.(formulaArg).ToNumber()
if bottom.Type == ArgError {
return bottom
}
top := argsList.Back().Value.(formulaArg).ToNumber()
if top.Type == ArgError {
return top
}
if top.Number < bottom.Number {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
num := rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(int64(top.Number - bottom.Number + 1))
return newNumberFormulaArg(float64(num + int64(bottom.Number)))
}
// romanNumerals defined a numeral system that originated in ancient Rome and
// remained the usual way of writing numbers throughout Europe well into the
// Late Middle Ages.
type romanNumerals struct {
n float64
s string
}
var romanTable = [][]romanNumerals{
{
{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"},
{50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
},
{
{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"},
{100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
{10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
},
{
{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"},
{450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"},
{45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
},
{
{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"},
{495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"},
{90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"},
{5, "V"}, {4, "IV"}, {1, "I"},
},
{
{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"},
{500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"},
{100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"},
{10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"},
},
}
// ROMAN function converts an arabic number to Roman. I.e. for a supplied
// integer, the function returns a text string depicting the roman numeral
// form of the number. The syntax of the function is:
//
// ROMAN(number,[form])
//
func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument")
}
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments")
}
var form int
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
if argsList.Len() > 1 {
f := argsList.Back().Value.(formulaArg).ToNumber()
if f.Type == ArgError {
return f
}
form = int(f.Number)
if form < 0 {
form = 0
} else if form > 4 {
form = 4
}
}
decimalTable := romanTable[0]
switch form {
case 1:
decimalTable = romanTable[1]
case 2:
decimalTable = romanTable[2]
case 3:
decimalTable = romanTable[3]
case 4:
decimalTable = romanTable[4]
}
val := math.Trunc(number.Number)
buf := bytes.Buffer{}
for _, r := range decimalTable {
for val >= r.n {
buf.WriteString(r.s)
val -= r.n
}
}
return newStringFormulaArg(buf.String())
}
type roundMode byte
const (
closest roundMode = iota
down
up
)
// round rounds a supplied number up or down.
func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 {
var significance float64
if digits > 0 {
significance = math.Pow(1/10.0, digits)
} else {
significance = math.Pow(10.0, -digits)
}
val, res := math.Modf(number / significance)
switch mode {
case closest:
const eps = 0.499999999
if res >= eps {
val++
} else if res <= -eps {
val--
}
case down:
case up:
if res > 0 {
val++
} else if res < 0 {
val--
}
}
return val * significance
}
// ROUND function rounds a supplied number up or down, to a specified number
// of decimal places. The syntax of the function is:
//
// ROUND(number,num_digits)
//
func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
digits := argsList.Back().Value.(formulaArg).ToNumber()
if digits.Type == ArgError {
return digits
}
return newNumberFormulaArg(fn.round(number.Number, digits.Number, closest))
}
// ROUNDDOWN function rounds a supplied number down towards zero, to a
// specified number of decimal places. The syntax of the function is:
//
// ROUNDDOWN(number,num_digits)
//
func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
digits := argsList.Back().Value.(formulaArg).ToNumber()
if digits.Type == ArgError {
return digits
}
return newNumberFormulaArg(fn.round(number.Number, digits.Number, down))
}
// ROUNDUP function rounds a supplied number up, away from zero, to a
// specified number of decimal places. The syntax of the function is:
//
// ROUNDUP(number,num_digits)
//
func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
digits := argsList.Back().Value.(formulaArg).ToNumber()
if digits.Type == ArgError {
return digits
}
return newNumberFormulaArg(fn.round(number.Number, digits.Number, up))
}
// SEC function calculates the secant of a given angle. The syntax of the
// function is:
//
// SEC(number)
//
func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newNumberFormulaArg(math.Cos(number.Number))
}
// SECH function calculates the hyperbolic secant (sech) of a supplied angle.
// The syntax of the function is:
//
// SECH(number)
//
func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newNumberFormulaArg(1 / math.Cosh(number.Number))
}
// SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied
// number. I.e. if the number is positive, the Sign function returns +1, if
// the number is negative, the function returns -1 and if the number is 0
// (zero), the function returns 0. The syntax of the function is:
//
// SIGN(number)
//
func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument")
}
val := argsList.Front().Value.(formulaArg).ToNumber()
if val.Type == ArgError {
return val
}
if val.Number < 0 {
return newNumberFormulaArg(-1)
}
if val.Number > 0 {
return newNumberFormulaArg(1)
}
return newNumberFormulaArg(0)
}
// SIN function calculates the sine of a given angle. The syntax of the
// function is:
//
// SIN(number)
//
func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newNumberFormulaArg(math.Sin(number.Number))
}
// SINH function calculates the hyperbolic sine (sinh) of a supplied number.
// The syntax of the function is:
//
// SINH(number)
//
func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newNumberFormulaArg(math.Sinh(number.Number))
}
// SQRT function calculates the positive square root of a supplied number. The
// syntax of the function is:
//
// SQRT(number)
//
func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument")
}
value := argsList.Front().Value.(formulaArg).ToNumber()
if value.Type == ArgError {
return value
}
if value.Number < 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return newNumberFormulaArg(math.Sqrt(value.Number))
}
// SQRTPI function returns the square root of a supplied number multiplied by
// the mathematical constant, π. The syntax of the function is:
//
// SQRTPI(number)
//
func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newNumberFormulaArg(math.Sqrt(number.Number * math.Pi))
}
// STDEV function calculates the sample standard deviation of a supplied set
// of values. The syntax of the function is:
//
// STDEV(number1,[number2],...)
//
func (fn *formulaFuncs) STDEV(argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "STDEV requires at least 1 argument")
}
return fn.stdev(false, argsList)
}
// STDEVdotS function calculates the sample standard deviation of a supplied
// set of values. The syntax of the function is:
//
// STDEV.S(number1,[number2],...)
//
func (fn *formulaFuncs) STDEVdotS(argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "STDEV.S requires at least 1 argument")
}
return fn.stdev(false, argsList)
}
// STDEVA function estimates standard deviation based on a sample. The
// standard deviation is a measure of how widely values are dispersed from
// the average value (the mean). The syntax of the function is:
//
// STDEVA(number1,[number2],...)
//
func (fn *formulaFuncs) STDEVA(argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "STDEVA requires at least 1 argument")
}
return fn.stdev(true, argsList)
}
// stdev is an implementation of the formula function STDEV and STDEVA.
func (fn *formulaFuncs) stdev(stdeva bool, argsList *list.List) formulaArg {
pow := func(result, count float64, n, m formulaArg) (float64, float64) {
if result == -1 {
result = math.Pow((n.Number - m.Number), 2)
} else {
result += math.Pow((n.Number - m.Number), 2)
}
count++
return result, count
}
count, result := -1.0, -1.0
var mean formulaArg
if stdeva {
mean = fn.AVERAGEA(argsList)
} else {
mean = fn.AVERAGE(argsList)
}
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg)
switch token.Type {
case ArgString, ArgNumber:
if !stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
continue
} else if stdeva && (token.Value() == "TRUE" || token.Value() == "FALSE") {
num := token.ToBool()
if num.Type == ArgNumber {
result, count = pow(result, count, num, mean)
continue
}
} else {
num := token.ToNumber()
if num.Type == ArgNumber {
result, count = pow(result, count, num, mean)
}
}
case ArgList, ArgMatrix:
for _, row := range token.ToList() {
if row.Type == ArgNumber || row.Type == ArgString {
if !stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
continue
} else if stdeva && (row.Value() == "TRUE" || row.Value() == "FALSE") {
num := row.ToBool()
if num.Type == ArgNumber {
result, count = pow(result, count, num, mean)
continue
}
} else {
num := row.ToNumber()
if num.Type == ArgNumber {
result, count = pow(result, count, num, mean)
}
}
}
}
}
}
if count > 0 && result >= 0 {
return newNumberFormulaArg(math.Sqrt(result / count))
}
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
// POISSONdotDIST function calculates the Poisson Probability Mass Function or
// the Cumulative Poisson Probability Function for a supplied set of
// parameters. The syntax of the function is:
//
// POISSON.DIST(x,mean,cumulative)
//
func (fn *formulaFuncs) POISSONdotDIST(argsList *list.List) formulaArg {
if argsList.Len() != 3 {
return newErrorFormulaArg(formulaErrorVALUE, "POISSON.DIST requires 3 arguments")
}
return fn.POISSON(argsList)
}
// POISSON function calculates the Poisson Probability Mass Function or the
// Cumulative Poisson Probability Function for a supplied set of parameters.
// The syntax of the function is:
//
// POISSON(x,mean,cumulative)
//
func (fn *formulaFuncs) POISSON(argsList *list.List) formulaArg {
if argsList.Len() != 3 {
return newErrorFormulaArg(formulaErrorVALUE, "POISSON requires 3 arguments")
}
var x, mean, cumulative formulaArg
if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
return x
}
if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
return mean
}
if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
return cumulative
}
if x.Number < 0 || mean.Number <= 0 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
if cumulative.Number == 1 {
summer := 0.0
floor := math.Floor(x.Number)
for i := 0; i <= int(floor); i++ {
summer += math.Pow(mean.Number, float64(i)) / fact(float64(i))
}
return newNumberFormulaArg(math.Exp(0-mean.Number) * summer)
}
return newNumberFormulaArg(math.Exp(0-mean.Number) * math.Pow(mean.Number, x.Number) / fact(x.Number))
}
// SUM function adds together a supplied set of numbers and returns the sum of
// these values. The syntax of the function is:
//
// SUM(number1,[number2],...)
//
func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg {
var sum float64
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg)
switch token.Type {
case ArgUnknown:
continue
case ArgString:
if num := token.ToNumber(); num.Type == ArgNumber {
sum += num.Number
}
case ArgNumber:
sum += token.Number
case ArgMatrix:
for _, row := range token.Matrix {
for _, value := range row {
if num := value.ToNumber(); num.Type == ArgNumber {
sum += num.Number
}
}
}
}
}
return newNumberFormulaArg(sum)
}
// SUMIF function finds the values in a supplied array, that satisfy a given
// criteria, and returns the sum of the corresponding values in a second
// supplied array. The syntax of the function is:
//
// SUMIF(range,criteria,[sum_range])
//
func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg {
if argsList.Len() < 2 {
return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument")
}
var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String)
var rangeMtx = argsList.Front().Value.(formulaArg).Matrix
var sumRange [][]formulaArg
if argsList.Len() == 3 {
sumRange = argsList.Back().Value.(formulaArg).Matrix
}
var sum, val float64
var err error
for rowIdx, row := range rangeMtx {
for colIdx, col := range row {
var ok bool
fromVal := col.String
if col.String == "" {
continue
}
if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
if ok {
if argsList.Len() == 3 {
if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx {
continue
}
fromVal = sumRange[rowIdx][colIdx].String
}
if val, err = strconv.ParseFloat(fromVal, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
sum += val
}
}
}
return newNumberFormulaArg(sum)
}
// SUMSQ function returns the sum of squares of a supplied set of values. The
// syntax of the function is:
//
// SUMSQ(number1,[number2],...)
//
func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg {
var val, sq float64
var err error
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg)
switch token.Type {
case ArgString:
if token.String == "" {
continue
}
if val, err = strconv.ParseFloat(token.String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
sq += val * val
case ArgNumber:
sq += token.Number
case ArgMatrix:
for _, row := range token.Matrix {
for _, value := range row {
if value.String == "" {
continue
}
if val, err = strconv.ParseFloat(value.String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
sq += val * val
}
}
}
}
return newNumberFormulaArg(sq)
}
// TAN function calculates the tangent of a given angle. The syntax of the
// function is:
//
// TAN(number)
//
func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newNumberFormulaArg(math.Tan(number.Number))
}
// TANH function calculates the hyperbolic tangent (tanh) of a supplied
// number. The syntax of the function is:
//
// TANH(number)
//
func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
return newNumberFormulaArg(math.Tanh(number.Number))
}
// TRUNC function truncates a supplied number to a specified number of decimal
// places. The syntax of the function is:
//
// TRUNC(number,[number_digits])
//
func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument")
}
var digits, adjust, rtrim float64
var err error
number := argsList.Front().Value.(formulaArg).ToNumber()
if number.Type == ArgError {
return number
}
if argsList.Len() > 1 {
d := argsList.Back().Value.(formulaArg).ToNumber()
if d.Type == ArgError {
return d
}
digits = d.Number
digits = math.Floor(digits)
}
adjust = math.Pow(10, digits)
x := int((math.Abs(number.Number) - math.Abs(float64(int(number.Number)))) * adjust)
if x != 0 {
if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
}
if (digits > 0) && (rtrim < adjust/10) {
return newNumberFormulaArg(number.Number)
}
return newNumberFormulaArg(float64(int(number.Number*adjust)) / adjust)
}
// Statistical Functions
// AVERAGE function returns the arithmetic mean of a list of supplied numbers.
// The syntax of the function is:
//
// AVERAGE(number1,[number2],...)
//
func (fn *formulaFuncs) AVERAGE(argsList *list.List) formulaArg {
args := []formulaArg{}
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
args = append(args, arg.Value.(formulaArg))
}
count, sum := fn.countSum(false, args)
if count == 0 {
return newErrorFormulaArg(formulaErrorDIV, "AVERAGE divide by zero")
}
return newNumberFormulaArg(sum / count)
}
// AVERAGEA function returns the arithmetic mean of a list of supplied numbers
// with text cell and zero values. The syntax of the function is:
//
// AVERAGEA(number1,[number2],...)
//
func (fn *formulaFuncs) AVERAGEA(argsList *list.List) formulaArg {
args := []formulaArg{}
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
args = append(args, arg.Value.(formulaArg))
}
count, sum := fn.countSum(true, args)
if count == 0 {
return newErrorFormulaArg(formulaErrorDIV, "AVERAGEA divide by zero")
}
return newNumberFormulaArg(sum / count)
}
// countSum get count and sum for a formula arguments array.
func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) {
for _, arg := range args {
switch arg.Type {
case ArgNumber:
if countText || !arg.Boolean {
sum += arg.Number
count++
}
case ArgString:
if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
continue
} else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
num := arg.ToBool()
if num.Type == ArgNumber {
count++
sum += num.Number
continue
}
}
num := arg.ToNumber()
if countText && num.Type == ArgError && arg.String != "" {
count++
}
if num.Type == ArgNumber {
sum += num.Number
count++
}
case ArgList, ArgMatrix:
cnt, summary := fn.countSum(countText, arg.ToList())
sum += summary
count += cnt
}
}
return
}
// COUNT function returns the count of numeric values in a supplied set of
// cells or values. This count includes both numbers and dates. The syntax of
// the function is:
//
// COUNT(value1,[value2],...)
//
func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg {
var count int
for token := argsList.Front(); token != nil; token = token.Next() {
arg := token.Value.(formulaArg)
switch arg.Type {
case ArgString:
if arg.ToNumber().Type != ArgError {
count++
}
case ArgNumber:
count++
case ArgMatrix:
for _, row := range arg.Matrix {
for _, value := range row {
if value.ToNumber().Type != ArgError {
count++
}
}
}
}
}
return newNumberFormulaArg(float64(count))
}
// COUNTA function returns the number of non-blanks within a supplied set of
// cells or values. The syntax of the function is:
//
// COUNTA(value1,[value2],...)
//
func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg {
var count int
for token := argsList.Front(); token != nil; token = token.Next() {
arg := token.Value.(formulaArg)
switch arg.Type {
case ArgString:
if arg.String != "" {
count++
}
case ArgNumber:
count++
case ArgMatrix:
for _, row := range arg.ToList() {
switch row.Type {
case ArgString:
if row.String != "" {
count++
}
case ArgNumber:
count++
}
}
}
}
return newNumberFormulaArg(float64(count))
}
// COUNTBLANK function returns the number of blank cells in a supplied range.
// The syntax of the function is:
//
// COUNTBLANK(range)
//
func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument")
}
var count int
token := argsList.Front().Value.(formulaArg)
switch token.Type {
case ArgString:
if token.String == "" {
count++
}
case ArgList, ArgMatrix:
for _, row := range token.ToList() {
switch row.Type {
case ArgString:
if row.String == "" {
count++
}
case ArgEmpty:
count++
}
}
case ArgEmpty:
count++
}
return newNumberFormulaArg(float64(count))
}
// FISHER function calculates the Fisher Transformation for a supplied value.
// The syntax of the function is:
//
// FISHER(x)
//
func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
}
token := argsList.Front().Value.(formulaArg)
switch token.Type {
case ArgString:
arg := token.ToNumber()
if arg.Type == ArgNumber {
if arg.Number <= -1 || arg.Number >= 1 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number)))
}
case ArgNumber:
if token.Number <= -1 || token.Number >= 1 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number)))
}
return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument")
}
// FISHERINV function calculates the inverse of the Fisher Transformation and
// returns a value between -1 and +1. The syntax of the function is:
//
// FISHERINV(y)
//
func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
}
token := argsList.Front().Value.(formulaArg)
switch token.Type {
case ArgString:
arg := token.ToNumber()
if arg.Type == ArgNumber {
return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1))
}
case ArgNumber:
return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1))
}
return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument")
}
// GAMMA function returns the value of the Gamma Function, Γ(n), for a
// specified number, n. The syntax of the function is:
//
// GAMMA(number)
//
func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
}
token := argsList.Front().Value.(formulaArg)
switch token.Type {
case ArgString:
arg := token.ToNumber()
if arg.Type == ArgNumber {
if arg.Number <= 0 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
return newNumberFormulaArg(math.Gamma(arg.Number))
}
case ArgNumber:
if token.Number <= 0 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
return newNumberFormulaArg(math.Gamma(token.Number))
}
return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument")
}
// GAMMALN function returns the natural logarithm of the Gamma Function, Γ
// (n). The syntax of the function is:
//
// GAMMALN(x)
//
func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
}
token := argsList.Front().Value.(formulaArg)
switch token.Type {
case ArgString:
arg := token.ToNumber()
if arg.Type == ArgNumber {
if arg.Number <= 0 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
return newNumberFormulaArg(math.Log(math.Gamma(arg.Number)))
}
case ArgNumber:
if token.Number <= 0 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
return newNumberFormulaArg(math.Log(math.Gamma(token.Number)))
}
return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument")
}
// HARMEAN function calculates the harmonic mean of a supplied set of values.
// The syntax of the function is:
//
// HARMEAN(number1,[number2],...)
//
func (fn *formulaFuncs) HARMEAN(argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "HARMEAN requires at least 1 argument")
}
if min := fn.MIN(argsList); min.Number < 0 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
number, val, cnt := 0.0, 0.0, 0.0
for token := argsList.Front(); token != nil; token = token.Next() {
arg := token.Value.(formulaArg)
switch arg.Type {
case ArgString:
num := arg.ToNumber()
if num.Type != ArgNumber {
continue
}
number = num.Number
case ArgNumber:
number = arg.Number
}
if number <= 0 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
val += (1 / number)
cnt++
}
return newNumberFormulaArg(1 / (val / cnt))
}
// KURT function calculates the kurtosis of a supplied set of values. The
// syntax of the function is:
//
// KURT(number1,[number2],...)
//
func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument")
}
mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList)
if stdev.Number > 0 {
count, summer := 0.0, 0.0
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg)
switch token.Type {
case ArgString, ArgNumber:
num := token.ToNumber()
if num.Type == ArgError {
continue
}
summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
count++
case ArgList, ArgMatrix:
for _, row := range token.ToList() {
if row.Type == ArgNumber || row.Type == ArgString {
num := row.ToNumber()
if num.Type == ArgError {
continue
}
summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4)
count++
}
}
}
}
if count > 3 {
return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3))))
}
}
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
// NORMdotDIST function calculates the Normal Probability Density Function or
// the Cumulative Normal Distribution. Function for a supplied set of
// parameters. The syntax of the function is:
//
// NORM.DIST(x,mean,standard_dev,cumulative)
//
func (fn *formulaFuncs) NORMdotDIST(argsList *list.List) formulaArg {
if argsList.Len() != 4 {
return newErrorFormulaArg(formulaErrorVALUE, "NORM.DIST requires 4 arguments")
}
return fn.NORMDIST(argsList)
}
// NORMDIST function calculates the Normal Probability Density Function or the
// Cumulative Normal Distribution. Function for a supplied set of parameters.
// The syntax of the function is:
//
// NORMDIST(x,mean,standard_dev,cumulative)
//
func (fn *formulaFuncs) NORMDIST(argsList *list.List) formulaArg {
if argsList.Len() != 4 {
return newErrorFormulaArg(formulaErrorVALUE, "NORMDIST requires 4 arguments")
}
var x, mean, stdDev, cumulative formulaArg
if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber {
return x
}
if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
return mean
}
if stdDev = argsList.Back().Prev().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
return stdDev
}
if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError {
return cumulative
}
if stdDev.Number < 0 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
if cumulative.Number == 1 {
return newNumberFormulaArg(0.5 * (1 + math.Erf((x.Number-mean.Number)/(stdDev.Number*math.Sqrt(2)))))
}
return newNumberFormulaArg((1 / (math.Sqrt(2*math.Pi) * stdDev.Number)) * math.Exp(0-(math.Pow(x.Number-mean.Number, 2)/(2*(stdDev.Number*stdDev.Number)))))
}
// NORMdotINV function calculates the inverse of the Cumulative Normal
// Distribution Function for a supplied value of x, and a supplied
// distribution mean & standard deviation. The syntax of the function is:
//
// NORM.INV(probability,mean,standard_dev)
//
func (fn *formulaFuncs) NORMdotINV(argsList *list.List) formulaArg {
if argsList.Len() != 3 {
return newErrorFormulaArg(formulaErrorVALUE, "NORM.INV requires 3 arguments")
}
return fn.NORMINV(argsList)
}
// NORMINV function calculates the inverse of the Cumulative Normal
// Distribution Function for a supplied value of x, and a supplied
// distribution mean & standard deviation. The syntax of the function is:
//
// NORMINV(probability,mean,standard_dev)
//
func (fn *formulaFuncs) NORMINV(argsList *list.List) formulaArg {
if argsList.Len() != 3 {
return newErrorFormulaArg(formulaErrorVALUE, "NORMINV requires 3 arguments")
}
var prob, mean, stdDev formulaArg
if prob = argsList.Front().Value.(formulaArg).ToNumber(); prob.Type != ArgNumber {
return prob
}
if mean = argsList.Front().Next().Value.(formulaArg).ToNumber(); mean.Type != ArgNumber {
return mean
}
if stdDev = argsList.Back().Value.(formulaArg).ToNumber(); stdDev.Type != ArgNumber {
return stdDev
}
if prob.Number < 0 || prob.Number > 1 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
if stdDev.Number < 0 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
inv, err := norminv(prob.Number)
if err != nil {
return newErrorFormulaArg(err.Error(), err.Error())
}
return newNumberFormulaArg(inv*stdDev.Number + mean.Number)
}
// NORMdotSdotDIST function calculates the Standard Normal Cumulative
// Distribution Function for a supplied value. The syntax of the function
// is:
//
// NORM.S.DIST(z)
//
func (fn *formulaFuncs) NORMdotSdotDIST(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.DIST requires 2 numeric arguments")
}
args := list.New().Init()
args.PushBack(argsList.Front().Value.(formulaArg))
args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
args.PushBack(argsList.Back().Value.(formulaArg))
return fn.NORMDIST(args)
}
// NORMSDIST function calculates the Standard Normal Cumulative Distribution
// Function for a supplied value. The syntax of the function is:
//
// NORMSDIST(z)
//
func (fn *formulaFuncs) NORMSDIST(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "NORMSDIST requires 1 numeric argument")
}
args := list.New().Init()
args.PushBack(argsList.Front().Value.(formulaArg))
args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
args.PushBack(formulaArg{Type: ArgNumber, Number: 1, Boolean: true})
return fn.NORMDIST(args)
}
// NORMSINV function calculates the inverse of the Standard Normal Cumulative
// Distribution Function for a supplied probability value. The syntax of the
// function is:
//
// NORMSINV(probability)
//
func (fn *formulaFuncs) NORMSINV(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "NORMSINV requires 1 numeric argument")
}
args := list.New().Init()
args.PushBack(argsList.Front().Value.(formulaArg))
args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
return fn.NORMINV(args)
}
// NORMdotSdotINV function calculates the inverse of the Standard Normal
// Cumulative Distribution Function for a supplied probability value. The
// syntax of the function is:
//
// NORM.S.INV(probability)
//
func (fn *formulaFuncs) NORMdotSdotINV(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "NORM.S.INV requires 1 numeric argument")
}
args := list.New().Init()
args.PushBack(argsList.Front().Value.(formulaArg))
args.PushBack(formulaArg{Type: ArgNumber, Number: 0})
args.PushBack(formulaArg{Type: ArgNumber, Number: 1})
return fn.NORMINV(args)
}
// norminv returns the inverse of the normal cumulative distribution for the
// specified value.
func norminv(p float64) (float64, error) {
a := map[int]float64{
1: -3.969683028665376e+01, 2: 2.209460984245205e+02, 3: -2.759285104469687e+02,
4: 1.383577518672690e+02, 5: -3.066479806614716e+01, 6: 2.506628277459239e+00,
}
b := map[int]float64{
1: -5.447609879822406e+01, 2: 1.615858368580409e+02, 3: -1.556989798598866e+02,
4: 6.680131188771972e+01, 5: -1.328068155288572e+01,
}
c := map[int]float64{
1: -7.784894002430293e-03, 2: -3.223964580411365e-01, 3: -2.400758277161838e+00,
4: -2.549732539343734e+00, 5: 4.374664141464968e+00, 6: 2.938163982698783e+00,
}
d := map[int]float64{
1: 7.784695709041462e-03, 2: 3.224671290700398e-01, 3: 2.445134137142996e+00,
4: 3.754408661907416e+00,
}
pLow := 0.02425 // Use lower region approx. below this
pHigh := 1 - pLow // Use upper region approx. above this
if 0 < p && p < pLow {
// Rational approximation for lower region.
q := math.Sqrt(-2 * math.Log(p))
return (((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
} else if pLow <= p && p <= pHigh {
// Rational approximation for central region.
q := p - 0.5
r := q * q
return (((((a[1]*r+a[2])*r+a[3])*r+a[4])*r+a[5])*r + a[6]) * q /
(((((b[1]*r+b[2])*r+b[3])*r+b[4])*r+b[5])*r + 1), nil
} else if pHigh < p && p < 1 {
// Rational approximation for upper region.
q := math.Sqrt(-2 * math.Log(1-p))
return -(((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q + c[6]) /
((((d[1]*q+d[2])*q+d[3])*q+d[4])*q + 1), nil
}
return 0, errors.New(formulaErrorNUM)
}
// kth is an implementation of the formula function LARGE and SMALL.
func (fn *formulaFuncs) kth(name string, argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
}
array := argsList.Front().Value.(formulaArg).ToList()
kArg := argsList.Back().Value.(formulaArg).ToNumber()
if kArg.Type != ArgNumber {
return kArg
}
k := int(kArg.Number)
if k < 1 {
return newErrorFormulaArg(formulaErrorNUM, "k should be > 0")
}
data := []float64{}
for _, arg := range array {
if numArg := arg.ToNumber(); numArg.Type == ArgNumber {
data = append(data, numArg.Number)
}
}
if len(data) < k {
return newErrorFormulaArg(formulaErrorNUM, "k should be <= length of array")
}
sort.Float64s(data)
if name == "LARGE" {
return newNumberFormulaArg(data[len(data)-k])
}
return newNumberFormulaArg(data[k-1])
}
// LARGE function returns the k'th largest value from an array of numeric
// values. The syntax of the function is:
//
// LARGE(array,k)
//
func (fn *formulaFuncs) LARGE(argsList *list.List) formulaArg {
return fn.kth("LARGE", argsList)
}
// MAX function returns the largest value from a supplied set of numeric
// values. The syntax of the function is:
//
// MAX(number1,[number2],...)
//
func (fn *formulaFuncs) MAX(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "MAX requires at least 1 argument")
}
return fn.max(false, argsList)
}
// MAXA function returns the largest value from a supplied set of numeric
// values, while counting text and the logical value FALSE as the value 0 and
// counting the logical value TRUE as the value 1. The syntax of the function
// is:
//
// MAXA(number1,[number2],...)
//
func (fn *formulaFuncs) MAXA(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "MAXA requires at least 1 argument")
}
return fn.max(true, argsList)
}
// max is an implementation of the formula function MAX and MAXA.
func (fn *formulaFuncs) max(maxa bool, argsList *list.List) formulaArg {
max := -math.MaxFloat64
for token := argsList.Front(); token != nil; token = token.Next() {
arg := token.Value.(formulaArg)
switch arg.Type {
case ArgString:
if !maxa && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
continue
} else {
num := arg.ToBool()
if num.Type == ArgNumber && num.Number > max {
max = num.Number
continue
}
}
num := arg.ToNumber()
if num.Type != ArgError && num.Number > max {
max = num.Number
}
case ArgNumber:
if arg.Number > max {
max = arg.Number
}
case ArgList, ArgMatrix:
for _, row := range arg.ToList() {
switch row.Type {
case ArgString:
if !maxa && (row.Value() == "TRUE" || row.Value() == "FALSE") {
continue
} else {
num := row.ToBool()
if num.Type == ArgNumber && num.Number > max {
max = num.Number
continue
}
}
num := row.ToNumber()
if num.Type != ArgError && num.Number > max {
max = num.Number
}
case ArgNumber:
if row.Number > max {
max = row.Number
}
}
}
case ArgError:
return arg
}
}
if max == -math.MaxFloat64 {
max = 0
}
return newNumberFormulaArg(max)
}
// MEDIAN function returns the statistical median (the middle value) of a list
// of supplied numbers. The syntax of the function is:
//
// MEDIAN(number1,[number2],...)
//
func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument")
}
var values = []float64{}
var median, digits float64
var err error
for token := argsList.Front(); token != nil; token = token.Next() {
arg := token.Value.(formulaArg)
switch arg.Type {
case ArgString:
num := arg.ToNumber()
if num.Type == ArgError {
return newErrorFormulaArg(formulaErrorVALUE, num.Error)
}
values = append(values, num.Number)
case ArgNumber:
values = append(values, arg.Number)
case ArgMatrix:
for _, row := range arg.Matrix {
for _, value := range row {
if value.String == "" {
continue
}
if digits, err = strconv.ParseFloat(value.String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
values = append(values, digits)
}
}
}
}
sort.Float64s(values)
if len(values)%2 == 0 {
median = (values[len(values)/2-1] + values[len(values)/2]) / 2
} else {
median = values[len(values)/2]
}
return newNumberFormulaArg(median)
}
// MIN function returns the smallest value from a supplied set of numeric
// values. The syntax of the function is:
//
// MIN(number1,[number2],...)
//
func (fn *formulaFuncs) MIN(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "MIN requires at least 1 argument")
}
return fn.min(false, argsList)
}
// MINA function returns the smallest value from a supplied set of numeric
// values, while counting text and the logical value FALSE as the value 0 and
// counting the logical value TRUE as the value 1. The syntax of the function
// is:
//
// MINA(number1,[number2],...)
//
func (fn *formulaFuncs) MINA(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "MINA requires at least 1 argument")
}
return fn.min(true, argsList)
}
// min is an implementation of the formula function MIN and MINA.
func (fn *formulaFuncs) min(mina bool, argsList *list.List) formulaArg {
min := math.MaxFloat64
for token := argsList.Front(); token != nil; token = token.Next() {
arg := token.Value.(formulaArg)
switch arg.Type {
case ArgString:
if !mina && (arg.Value() == "TRUE" || arg.Value() == "FALSE") {
continue
} else {
num := arg.ToBool()
if num.Type == ArgNumber && num.Number < min {
min = num.Number
continue
}
}
num := arg.ToNumber()
if num.Type != ArgError && num.Number < min {
min = num.Number
}
case ArgNumber:
if arg.Number < min {
min = arg.Number
}
case ArgList, ArgMatrix:
for _, row := range arg.ToList() {
switch row.Type {
case ArgString:
if !mina && (row.Value() == "TRUE" || row.Value() == "FALSE") {
continue
} else {
num := row.ToBool()
if num.Type == ArgNumber && num.Number < min {
min = num.Number
continue
}
}
num := row.ToNumber()
if num.Type != ArgError && num.Number < min {
min = num.Number
}
case ArgNumber:
if row.Number < min {
min = row.Number
}
}
}
case ArgError:
return arg
}
}
if min == math.MaxFloat64 {
min = 0
}
return newNumberFormulaArg(min)
}
// PERCENTILEdotINC function returns the k'th percentile (i.e. the value below
// which k% of the data values fall) for a supplied range of values and a
// supplied k. The syntax of the function is:
//
// PERCENTILE.INC(array,k)
//
func (fn *formulaFuncs) PERCENTILEdotINC(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE.INC requires 2 arguments")
}
return fn.PERCENTILE(argsList)
}
// PERCENTILE function returns the k'th percentile (i.e. the value below which
// k% of the data values fall) for a supplied range of values and a supplied
// k. The syntax of the function is:
//
// PERCENTILE(array,k)
//
func (fn *formulaFuncs) PERCENTILE(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "PERCENTILE requires 2 arguments")
}
array := argsList.Front().Value.(formulaArg).ToList()
k := argsList.Back().Value.(formulaArg).ToNumber()
if k.Type != ArgNumber {
return k
}
if k.Number < 0 || k.Number > 1 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
numbers := []float64{}
for _, arg := range array {
if arg.Type == ArgError {
return arg
}
num := arg.ToNumber()
if num.Type == ArgNumber {
numbers = append(numbers, num.Number)
}
}
cnt := len(numbers)
sort.Float64s(numbers)
idx := k.Number * (float64(cnt) - 1)
base := math.Floor(idx)
if idx == base {
return newNumberFormulaArg(numbers[int(idx)])
}
next := base + 1
proportion := idx - base
return newNumberFormulaArg(numbers[int(base)] + ((numbers[int(next)] - numbers[int(base)]) * proportion))
}
// PERMUT function calculates the number of permutations of a specified number
// of objects from a set of objects. The syntax of the function is:
//
// PERMUT(number,number_chosen)
//
func (fn *formulaFuncs) PERMUT(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "PERMUT requires 2 numeric arguments")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
chosen := argsList.Back().Value.(formulaArg).ToNumber()
if number.Type != ArgNumber {
return number
}
if chosen.Type != ArgNumber {
return chosen
}
if number.Number < chosen.Number {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
return newNumberFormulaArg(math.Round(fact(number.Number) / fact(number.Number-chosen.Number)))
}
// PERMUTATIONA function calculates the number of permutations, with
// repetitions, of a specified number of objects from a set. The syntax of
// the function is:
//
// PERMUTATIONA(number,number_chosen)
//
func (fn *formulaFuncs) PERMUTATIONA(argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "PERMUTATIONA requires 2 numeric arguments")
}
number := argsList.Front().Value.(formulaArg).ToNumber()
chosen := argsList.Back().Value.(formulaArg).ToNumber()
if number.Type != ArgNumber {
return number
}
if chosen.Type != ArgNumber {
return chosen
}
num, numChosen := math.Floor(number.Number), math.Floor(chosen.Number)
if num < 0 || numChosen < 0 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
return newNumberFormulaArg(math.Pow(num, numChosen))
}
// QUARTILE function returns a requested quartile of a supplied range of
// values. The syntax of the function is:
//
// QUARTILE(array,quart)
//
func (fn *formulaFuncs) QUARTILE(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE requires 2 arguments")
}
quart := argsList.Back().Value.(formulaArg).ToNumber()
if quart.Type != ArgNumber {
return quart
}
if quart.Number < 0 || quart.Number > 4 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
args := list.New().Init()
args.PushBack(argsList.Front().Value.(formulaArg))
args.PushBack(newNumberFormulaArg(quart.Number / 4))
return fn.PERCENTILE(args)
}
// QUARTILEdotINC function returns a requested quartile of a supplied range of
// values. The syntax of the function is:
//
// QUARTILE.INC(array,quart)
//
func (fn *formulaFuncs) QUARTILEdotINC(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "QUARTILE.INC requires 2 arguments")
}
return fn.QUARTILE(argsList)
}
// SKEW function calculates the skewness of the distribution of a supplied set
// of values. The syntax of the function is:
//
// SKEW(number1,[number2],...)
//
func (fn *formulaFuncs) SKEW(argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "SKEW requires at least 1 argument")
}
mean, stdDev, count, summer := fn.AVERAGE(argsList), fn.STDEV(argsList), 0.0, 0.0
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg)
switch token.Type {
case ArgNumber, ArgString:
num := token.ToNumber()
if num.Type == ArgError {
return num
}
summer += math.Pow((num.Number-mean.Number)/stdDev.Number, 3)
count++
case ArgList, ArgMatrix:
for _, row := range token.ToList() {
numArg := row.ToNumber()
if numArg.Type != ArgNumber {
continue
}
summer += math.Pow((numArg.Number-mean.Number)/stdDev.Number, 3)
count++
}
}
}
if count > 2 {
return newNumberFormulaArg(summer * (count / ((count - 1) * (count - 2))))
}
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
// SMALL function returns the k'th smallest value from an array of numeric
// values. The syntax of the function is:
//
// SMALL(array,k)
//
func (fn *formulaFuncs) SMALL(argsList *list.List) formulaArg {
return fn.kth("SMALL", argsList)
}
// VARP function returns the Variance of a given set of values. The syntax of
// the function is:
//
// VARP(number1,[number2],...)
//
func (fn *formulaFuncs) VARP(argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "VARP requires at least 1 argument")
}
summerA, summerB, count := 0.0, 0.0, 0.0
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
for _, token := range arg.Value.(formulaArg).ToList() {
if num := token.ToNumber(); num.Type == ArgNumber {
summerA += (num.Number * num.Number)
summerB += num.Number
count++
}
}
}
if count > 0 {
summerA *= count
summerB *= summerB
return newNumberFormulaArg((summerA - summerB) / (count * count))
}
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
// VARdotP function returns the Variance of a given set of values. The syntax
// of the function is:
//
// VAR.P(number1,[number2],...)
//
func (fn *formulaFuncs) VARdotP(argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "VAR.P requires at least 1 argument")
}
return fn.VARP(argsList)
}
// Information Functions
// ISBLANK function tests if a specified cell is blank (empty) and if so,
// returns TRUE; Otherwise the function returns FALSE. The syntax of the
// function is:
//
// ISBLANK(value)
//
func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument")
}
token := argsList.Front().Value.(formulaArg)
result := "FALSE"
switch token.Type {
case ArgUnknown:
result = "TRUE"
case ArgString:
if token.String == "" {
result = "TRUE"
}
}
return newStringFormulaArg(result)
}
// ISERR function tests if an initial supplied expression (or value) returns
// any Excel Error, except the #N/A error. If so, the function returns the
// logical value TRUE; If the supplied value is not an error or is the #N/A
// error, the ISERR function returns FALSE. The syntax of the function is:
//
// ISERR(value)
//
func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument")
}
token := argsList.Front().Value.(formulaArg)
result := "FALSE"
if token.Type == ArgError {
for _, errType := range []string{
formulaErrorDIV, formulaErrorNAME, formulaErrorNUM,
formulaErrorVALUE, formulaErrorREF, formulaErrorNULL,
formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA,
} {
if errType == token.String {
result = "TRUE"
}
}
}
return newStringFormulaArg(result)
}
// ISERROR function tests if an initial supplied expression (or value) returns
// an Excel Error, and if so, returns the logical value TRUE; Otherwise the
// function returns FALSE. The syntax of the function is:
//
// ISERROR(value)
//
func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument")
}
token := argsList.Front().Value.(formulaArg)
result := "FALSE"
if token.Type == ArgError {
for _, errType := range []string{
formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM,
formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL,
formulaErrorCALC, formulaErrorGETTINGDATA,
} {
if errType == token.String {
result = "TRUE"
}
}
}
return newStringFormulaArg(result)
}
// ISEVEN function tests if a supplied number (or numeric expression)
// evaluates to an even number, and if so, returns TRUE; Otherwise, the
// function returns FALSE. The syntax of the function is:
//
// ISEVEN(value)
//
func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument")
}
var (
token = argsList.Front().Value.(formulaArg)
result = "FALSE"
numeric int
err error
)
if token.Type == ArgString {
if numeric, err = strconv.Atoi(token.String); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
if numeric == numeric/2*2 {
return newStringFormulaArg("TRUE")
}
}
return newStringFormulaArg(result)
}
// ISNA function tests if an initial supplied expression (or value) returns
// the Excel #N/A Error, and if so, returns TRUE; Otherwise the function
// returns FALSE. The syntax of the function is:
//
// ISNA(value)
//
func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument")
}
token := argsList.Front().Value.(formulaArg)
result := "FALSE"
if token.Type == ArgError && token.String == formulaErrorNA {
result = "TRUE"
}
return newStringFormulaArg(result)
}
// ISNONTEXT function function tests if a supplied value is text. If not, the
// function returns TRUE; If the supplied value is text, the function returns
// FALSE. The syntax of the function is:
//
// ISNONTEXT(value)
//
func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument")
}
token := argsList.Front().Value.(formulaArg)
result := "TRUE"
if token.Type == ArgString && token.String != "" {
result = "FALSE"
}
return newStringFormulaArg(result)
}
// ISNUMBER function function tests if a supplied value is a number. If so,
// the function returns TRUE; Otherwise it returns FALSE. The syntax of the
// function is:
//
// ISNUMBER(value)
//
func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument")
}
token, result := argsList.Front().Value.(formulaArg), false
if token.Type == ArgString && token.String != "" {
if _, err := strconv.Atoi(token.String); err == nil {
result = true
}
}
return newBoolFormulaArg(result)
}
// ISODD function tests if a supplied number (or numeric expression) evaluates
// to an odd number, and if so, returns TRUE; Otherwise, the function returns
// FALSE. The syntax of the function is:
//
// ISODD(value)
//
func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument")
}
var (
token = argsList.Front().Value.(formulaArg)
result = "FALSE"
numeric int
err error
)
if token.Type == ArgString {
if numeric, err = strconv.Atoi(token.String); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
if numeric != numeric/2*2 {
return newStringFormulaArg("TRUE")
}
}
return newStringFormulaArg(result)
}
// ISTEXT function tests if a supplied value is text, and if so, returns TRUE;
// Otherwise, the function returns FALSE. The syntax of the function is:
//
// ISTEXT(value)
//
func (fn *formulaFuncs) ISTEXT(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ISTEXT requires 1 argument")
}
token := argsList.Front().Value.(formulaArg)
if token.ToNumber().Type != ArgError {
return newBoolFormulaArg(false)
}
return newBoolFormulaArg(token.Type == ArgString)
}
// N function converts data into a numeric value. The syntax of the function
// is:
//
// N(value)
//
func (fn *formulaFuncs) N(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "N requires 1 argument")
}
token, num := argsList.Front().Value.(formulaArg), 0.0
if token.Type == ArgError {
return token
}
if arg := token.ToNumber(); arg.Type == ArgNumber {
num = arg.Number
}
if token.Value() == "TRUE" {
num = 1
}
return newNumberFormulaArg(num)
}
// NA function returns the Excel #N/A error. This error message has the
// meaning 'value not available' and is produced when an Excel Formula is
// unable to find a value that it needs. The syntax of the function is:
//
// NA()
//
func (fn *formulaFuncs) NA(argsList *list.List) formulaArg {
if argsList.Len() != 0 {
return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments")
}
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
// SHEET function returns the Sheet number for a specified reference. The
// syntax of the function is:
//
// SHEET()
//
func (fn *formulaFuncs) SHEET(argsList *list.List) formulaArg {
if argsList.Len() != 0 {
return newErrorFormulaArg(formulaErrorVALUE, "SHEET accepts no arguments")
}
return newNumberFormulaArg(float64(fn.f.GetSheetIndex(fn.sheet) + 1))
}
// T function tests if a supplied value is text and if so, returns the
// supplied text; Otherwise, the function returns an empty text string. The
// syntax of the function is:
//
// T(value)
//
func (fn *formulaFuncs) T(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "T requires 1 argument")
}
token := argsList.Front().Value.(formulaArg)
if token.Type == ArgError {
return token
}
if token.Type == ArgNumber {
return newStringFormulaArg("")
}
return newStringFormulaArg(token.Value())
}
// Logical Functions
// AND function tests a number of supplied conditions and returns TRUE or
// FALSE. The syntax of the function is:
//
// AND(logical_test1,[logical_test2],...)
//
func (fn *formulaFuncs) AND(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument")
}
if argsList.Len() > 30 {
return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments")
}
var (
and = true
val float64
err error
)
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg)
switch token.Type {
case ArgUnknown:
continue
case ArgString:
if token.String == "TRUE" {
continue
}
if token.String == "FALSE" {
return newStringFormulaArg(token.String)
}
if val, err = strconv.ParseFloat(token.String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
and = and && (val != 0)
case ArgMatrix:
// TODO
return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
}
}
return newBoolFormulaArg(and)
}
// FALSE function function returns the logical value FALSE. The syntax of the
// function is:
//
// FALSE()
//
func (fn *formulaFuncs) FALSE(argsList *list.List) formulaArg {
if argsList.Len() != 0 {
return newErrorFormulaArg(formulaErrorVALUE, "FALSE takes no arguments")
}
return newBoolFormulaArg(false)
}
// IFERROR function receives two values (or expressions) and tests if the
// first of these evaluates to an error. The syntax of the function is:
//
// IFERROR(value,value_if_error)
//
func (fn *formulaFuncs) IFERROR(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "IFERROR requires 2 arguments")
}
value := argsList.Front().Value.(formulaArg)
if value.Type != ArgError {
if value.Type == ArgEmpty {
return newNumberFormulaArg(0)
}
return value
}
return argsList.Back().Value.(formulaArg)
}
// NOT function returns the opposite to a supplied logical value. The syntax
// of the function is:
//
// NOT(logical)
//
func (fn *formulaFuncs) NOT(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "NOT requires 1 argument")
}
token := argsList.Front().Value.(formulaArg)
switch token.Type {
case ArgString, ArgList:
if strings.ToUpper(token.String) == "TRUE" {
return newBoolFormulaArg(false)
}
if strings.ToUpper(token.String) == "FALSE" {
return newBoolFormulaArg(true)
}
case ArgNumber:
return newBoolFormulaArg(!(token.Number != 0))
case ArgError:
return token
}
return newErrorFormulaArg(formulaErrorVALUE, "NOT expects 1 boolean or numeric argument")
}
// OR function tests a number of supplied conditions and returns either TRUE
// or FALSE. The syntax of the function is:
//
// OR(logical_test1,[logical_test2],...)
//
func (fn *formulaFuncs) OR(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument")
}
if argsList.Len() > 30 {
return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments")
}
var (
or bool
val float64
err error
)
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg)
switch token.Type {
case ArgUnknown:
continue
case ArgString:
if token.String == "FALSE" {
continue
}
if token.String == "TRUE" {
or = true
continue
}
if val, err = strconv.ParseFloat(token.String, 64); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
or = val != 0
case ArgMatrix:
// TODO
return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
}
}
return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or)))
}
// TRUE function returns the logical value TRUE. The syntax of the function
// is:
//
// TRUE()
//
func (fn *formulaFuncs) TRUE(argsList *list.List) formulaArg {
if argsList.Len() != 0 {
return newErrorFormulaArg(formulaErrorVALUE, "TRUE takes no arguments")
}
return newBoolFormulaArg(true)
}
// Date and Time Functions
// DATE returns a date, from a user-supplied year, month and day. The syntax
// of the function is:
//
// DATE(year,month,day)
//
func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg {
if argsList.Len() != 3 {
return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
}
year := argsList.Front().Value.(formulaArg).ToNumber()
month := argsList.Front().Next().Value.(formulaArg).ToNumber()
day := argsList.Back().Value.(formulaArg).ToNumber()
if year.Type != ArgNumber || month.Type != ArgNumber || day.Type != ArgNumber {
return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments")
}
d := makeDate(int(year.Number), time.Month(month.Number), int(day.Number))
return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String())
}
// DATEDIF function calculates the number of days, months, or years between
// two dates. The syntax of the function is:
//
// DATEDIF(start_date,end_date,unit)
//
func (fn *formulaFuncs) DATEDIF(argsList *list.List) formulaArg {
if argsList.Len() != 3 {
return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF requires 3 number arguments")
}
startArg, endArg := argsList.Front().Value.(formulaArg).ToNumber(), argsList.Front().Next().Value.(formulaArg).ToNumber()
if startArg.Type != ArgNumber || endArg.Type != ArgNumber {
return startArg
}
if startArg.Number > endArg.Number {
return newErrorFormulaArg(formulaErrorNUM, "start_date > end_date")
}
if startArg.Number == endArg.Number {
return newNumberFormulaArg(0)
}
unit := strings.ToLower(argsList.Back().Value.(formulaArg).Value())
startDate, endDate := timeFromExcelTime(startArg.Number, false), timeFromExcelTime(endArg.Number, false)
sy, smm, sd := startDate.Date()
ey, emm, ed := endDate.Date()
sm, em, diff := int(smm), int(emm), 0.0
switch unit {
case "d":
return newNumberFormulaArg(endArg.Number - startArg.Number)
case "y":
diff = float64(ey - sy)
if em < sm || (em == sm && ed < sd) {
diff--
}
case "m":
ydiff := ey - sy
mdiff := em - sm
if ed < sd {
mdiff--
}
if mdiff < 0 {
ydiff--
mdiff += 12
}
diff = float64(ydiff*12 + mdiff)
case "md":
smMD := em
if ed < sd {
smMD--
}
diff = endArg.Number - daysBetween(excelMinTime1900.Unix(), makeDate(ey, time.Month(smMD), sd)) - 1
case "ym":
diff = float64(em - sm)
if ed < sd {
diff--
}
if diff < 0 {
diff += 12
}
case "yd":
syYD := sy
if em < sm || (em == sm && ed < sd) {
syYD++
}
s := daysBetween(excelMinTime1900.Unix(), makeDate(syYD, time.Month(em), ed))
e := daysBetween(excelMinTime1900.Unix(), makeDate(sy, time.Month(sm), sd))
diff = s - e
default:
return newErrorFormulaArg(formulaErrorVALUE, "DATEDIF has invalid unit")
}
return newNumberFormulaArg(diff)
}
// NOW function returns the current date and time. The function receives no
// arguments and therefore. The syntax of the function is:
//
// NOW()
//
func (fn *formulaFuncs) NOW(argsList *list.List) formulaArg {
if argsList.Len() != 0 {
return newErrorFormulaArg(formulaErrorVALUE, "NOW accepts no arguments")
}
now := time.Now()
_, offset := now.Zone()
return newNumberFormulaArg(25569.0 + float64(now.Unix()+int64(offset))/86400)
}
// TODAY function returns the current date. The function has no arguments and
// therefore. The syntax of the function is:
//
// TODAY()
//
func (fn *formulaFuncs) TODAY(argsList *list.List) formulaArg {
if argsList.Len() != 0 {
return newErrorFormulaArg(formulaErrorVALUE, "TODAY accepts no arguments")
}
now := time.Now()
_, offset := now.Zone()
return newNumberFormulaArg(daysBetween(excelMinTime1900.Unix(), now.Unix()+int64(offset)) + 1)
}
// makeDate return date as a Unix time, the number of seconds elapsed since
// January 1, 1970 UTC.
func makeDate(y int, m time.Month, d int) int64 {
if y == 1900 && int(m) <= 2 {
d--
}
date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC)
return date.Unix()
}
// daysBetween return time interval of the given start timestamp and end
// timestamp.
func daysBetween(startDate, endDate int64) float64 {
return float64(int(0.5 + float64((endDate-startDate)/86400)))
}
// Text Functions
// CHAR function returns the character relating to a supplied character set
// number (from 1 to 255). syntax of the function is:
//
// CHAR(number)
//
func (fn *formulaFuncs) CHAR(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "CHAR requires 1 argument")
}
arg := argsList.Front().Value.(formulaArg).ToNumber()
if arg.Type != ArgNumber {
return arg
}
num := int(arg.Number)
if num < 0 || num > 255 {
return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
}
return newStringFormulaArg(fmt.Sprintf("%c", num))
}
// CLEAN removes all non-printable characters from a supplied text string. The
// syntax of the function is:
//
// CLEAN(text)
//
func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument")
}
b := bytes.Buffer{}
for _, c := range argsList.Front().Value.(formulaArg).String {
if c > 31 {
b.WriteRune(c)
}
}
return newStringFormulaArg(b.String())
}
// CODE function converts the first character of a supplied text string into
// the associated numeric character set code used by your computer. The
// syntax of the function is:
//
// CODE(text)
//
func (fn *formulaFuncs) CODE(argsList *list.List) formulaArg {
return fn.code("CODE", argsList)
}
// code is an implementation of the formula function CODE and UNICODE.
func (fn *formulaFuncs) code(name string, argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 1 argument", name))
}
text := argsList.Front().Value.(formulaArg).Value()
if len(text) == 0 {
if name == "CODE" {
return newNumberFormulaArg(0)
}
return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
}
return newNumberFormulaArg(float64(text[0]))
}
// CONCAT function joins together a series of supplied text strings into one
// combined text string.
//
// CONCAT(text1,[text2],...)
//
func (fn *formulaFuncs) CONCAT(argsList *list.List) formulaArg {
return fn.concat("CONCAT", argsList)
}
// CONCATENATE function joins together a series of supplied text strings into
// one combined text string.
//
// CONCATENATE(text1,[text2],...)
//
func (fn *formulaFuncs) CONCATENATE(argsList *list.List) formulaArg {
return fn.concat("CONCATENATE", argsList)
}
// concat is an implementation of the formula function CONCAT and CONCATENATE.
func (fn *formulaFuncs) concat(name string, argsList *list.List) formulaArg {
buf := bytes.Buffer{}
for arg := argsList.Front(); arg != nil; arg = arg.Next() {
token := arg.Value.(formulaArg)
switch token.Type {
case ArgString:
buf.WriteString(token.String)
case ArgNumber:
if token.Boolean {
if token.Number == 0 {
buf.WriteString("FALSE")
} else {
buf.WriteString("TRUE")
}
} else {
buf.WriteString(token.Value())
}
default:
return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires arguments to be strings", name))
}
}
return newStringFormulaArg(buf.String())
}
// EXACT function tests if two supplied text strings or values are exactly
// equal and if so, returns TRUE; Otherwise, the function returns FALSE. The
// function is case-sensitive. The syntax of the function is:
//
// EXACT(text1,text2)
//
func (fn *formulaFuncs) EXACT(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "EXACT requires 2 arguments")
}
text1 := argsList.Front().Value.(formulaArg).Value()
text2 := argsList.Back().Value.(formulaArg).Value()
return newBoolFormulaArg(text1 == text2)
}
// FIXED function rounds a supplied number to a specified number of decimal
// places and then converts this into text. The syntax of the function is:
//
// FIXED(number,[decimals],[no_commas])
//
func (fn *formulaFuncs) FIXED(argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "FIXED requires at least 1 argument")
}
if argsList.Len() > 3 {
return newErrorFormulaArg(formulaErrorVALUE, "FIXED allows at most 3 arguments")
}
numArg := argsList.Front().Value.(formulaArg).ToNumber()
if numArg.Type != ArgNumber {
return numArg
}
precision, decimals, noCommas := 0, 0, false
s := strings.Split(argsList.Front().Value.(formulaArg).Value(), ".")
if argsList.Len() == 1 && len(s) == 2 {
precision = len(s[1])
decimals = len(s[1])
}
if argsList.Len() >= 2 {
decimalsArg := argsList.Front().Next().Value.(formulaArg).ToNumber()
if decimalsArg.Type != ArgNumber {
return decimalsArg
}
decimals = int(decimalsArg.Number)
}
if argsList.Len() == 3 {
noCommasArg := argsList.Back().Value.(formulaArg).ToBool()
if noCommasArg.Type == ArgError {
return noCommasArg
}
noCommas = noCommasArg.Boolean
}
n := math.Pow(10, float64(decimals))
r := numArg.Number * n
fixed := float64(int(r+math.Copysign(0.5, r))) / n
if decimals > 0 {
precision = decimals
}
if noCommas {
return newStringFormulaArg(fmt.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
}
p := message.NewPrinter(language.English)
return newStringFormulaArg(p.Sprintf(fmt.Sprintf("%%.%df", precision), fixed))
}
// FIND function returns the position of a specified character or sub-string
// within a supplied text string. The function is case-sensitive. The syntax
// of the function is:
//
// FIND(find_text,within_text,[start_num])
//
func (fn *formulaFuncs) FIND(argsList *list.List) formulaArg {
return fn.find("FIND", argsList)
}
// FINDB counts each double-byte character as 2 when you have enabled the
// editing of a language that supports DBCS and then set it as the default
// language. Otherwise, FINDB counts each character as 1. The syntax of the
// function is:
//
// FINDB(find_text,within_text,[start_num])
//
func (fn *formulaFuncs) FINDB(argsList *list.List) formulaArg {
return fn.find("FINDB", argsList)
}
// find is an implementation of the formula function FIND and FINDB.
func (fn *formulaFuncs) find(name string, argsList *list.List) formulaArg {
if argsList.Len() < 2 {
return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 2 arguments", name))
}
if argsList.Len() > 3 {
return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 3 arguments", name))
}
findText := argsList.Front().Value.(formulaArg).Value()
withinText := argsList.Front().Next().Value.(formulaArg).Value()
startNum, result := 1, 1
if argsList.Len() == 3 {
numArg := argsList.Back().Value.(formulaArg).ToNumber()
if numArg.Type != ArgNumber {
return numArg
}
if numArg.Number < 0 {
return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
}
startNum = int(numArg.Number)
}
if findText == "" {
return newNumberFormulaArg(float64(startNum))
}
for idx := range withinText {
if result < startNum {
result++
}
if strings.Index(withinText[idx:], findText) == 0 {
return newNumberFormulaArg(float64(result))
}
result++
}
return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
}
// LEFT function returns a specified number of characters from the start of a
// supplied text string. The syntax of the function is:
//
// LEFT(text,[num_chars])
//
func (fn *formulaFuncs) LEFT(argsList *list.List) formulaArg {
return fn.leftRight("LEFT", argsList)
}
// LEFTB returns the first character or characters in a text string, based on
// the number of bytes you specify. The syntax of the function is:
//
// LEFTB(text,[num_bytes])
//
func (fn *formulaFuncs) LEFTB(argsList *list.List) formulaArg {
return fn.leftRight("LEFTB", argsList)
}
// leftRight is an implementation of the formula function LEFT, LEFTB, RIGHT,
// RIGHTB. TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
// (Traditional), and Korean.
func (fn *formulaFuncs) leftRight(name string, argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 1 argument", name))
}
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 2 arguments", name))
}
text, numChars := argsList.Front().Value.(formulaArg).Value(), 1
if argsList.Len() == 2 {
numArg := argsList.Back().Value.(formulaArg).ToNumber()
if numArg.Type != ArgNumber {
return numArg
}
if numArg.Number < 0 {
return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
}
numChars = int(numArg.Number)
}
if len(text) > numChars {
if name == "LEFT" || name == "LEFTB" {
return newStringFormulaArg(text[:numChars])
}
return newStringFormulaArg(text[len(text)-numChars:])
}
return newStringFormulaArg(text)
}
// LEN returns the length of a supplied text string. The syntax of the
// function is:
//
// LEN(text)
//
func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument")
}
return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
}
// LENB returns the number of bytes used to represent the characters in a text
// string. LENB counts 2 bytes per character only when a DBCS language is set
// as the default language. Otherwise LENB behaves the same as LEN, counting
// 1 byte per character. The syntax of the function is:
//
// LENB(text)
//
// TODO: the languages that support DBCS include Japanese, Chinese
// (Simplified), Chinese (Traditional), and Korean.
func (fn *formulaFuncs) LENB(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "LENB requires 1 string argument")
}
return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String)))
}
// LOWER converts all characters in a supplied text string to lower case. The
// syntax of the function is:
//
// LOWER(text)
//
func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument")
}
return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String))
}
// MID function returns a specified number of characters from the middle of a
// supplied text string. The syntax of the function is:
//
// MID(text,start_num,num_chars)
//
func (fn *formulaFuncs) MID(argsList *list.List) formulaArg {
return fn.mid("MID", argsList)
}
// MIDB returns a specific number of characters from a text string, starting
// at the position you specify, based on the number of bytes you specify. The
// syntax of the function is:
//
// MID(text,start_num,num_chars)
//
func (fn *formulaFuncs) MIDB(argsList *list.List) formulaArg {
return fn.mid("MIDB", argsList)
}
// mid is an implementation of the formula function MID and MIDB. TODO:
// support DBCS include Japanese, Chinese (Simplified), Chinese
// (Traditional), and Korean.
func (fn *formulaFuncs) mid(name string, argsList *list.List) formulaArg {
if argsList.Len() != 3 {
return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name))
}
text := argsList.Front().Value.(formulaArg).Value()
startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
if startNumArg.Type != ArgNumber {
return startNumArg
}
if numCharsArg.Type != ArgNumber {
return numCharsArg
}
startNum := int(startNumArg.Number)
if startNum < 0 {
return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
}
textLen := len(text)
if startNum > textLen {
return newStringFormulaArg("")
}
startNum--
endNum := startNum + int(numCharsArg.Number)
if endNum > textLen+1 {
return newStringFormulaArg(text[startNum:])
}
return newStringFormulaArg(text[startNum:endNum])
}
// PROPER converts all characters in a supplied text string to proper case
// (i.e. all letters that do not immediately follow another letter are set to
// upper case and all other characters are lower case). The syntax of the
// function is:
//
// PROPER(text)
//
func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument")
}
buf := bytes.Buffer{}
isLetter := false
for _, char := range argsList.Front().Value.(formulaArg).String {
if !isLetter && unicode.IsLetter(char) {
buf.WriteRune(unicode.ToUpper(char))
} else {
buf.WriteRune(unicode.ToLower(char))
}
isLetter = unicode.IsLetter(char)
}
return newStringFormulaArg(buf.String())
}
// REPLACE function replaces all or part of a text string with another string.
// The syntax of the function is:
//
// REPLACE(old_text,start_num,num_chars,new_text)
//
func (fn *formulaFuncs) REPLACE(argsList *list.List) formulaArg {
return fn.replace("REPLACE", argsList)
}
// REPLACEB replaces part of a text string, based on the number of bytes you
// specify, with a different text string.
//
// REPLACEB(old_text,start_num,num_chars,new_text)
//
func (fn *formulaFuncs) REPLACEB(argsList *list.List) formulaArg {
return fn.replace("REPLACEB", argsList)
}
// replace is an implementation of the formula function REPLACE and REPLACEB.
// TODO: support DBCS include Japanese, Chinese (Simplified), Chinese
// (Traditional), and Korean.
func (fn *formulaFuncs) replace(name string, argsList *list.List) formulaArg {
if argsList.Len() != 4 {
return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 4 arguments", name))
}
oldText, newText := argsList.Front().Value.(formulaArg).Value(), argsList.Back().Value.(formulaArg).Value()
startNumArg, numCharsArg := argsList.Front().Next().Value.(formulaArg).ToNumber(), argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
if startNumArg.Type != ArgNumber {
return startNumArg
}
if numCharsArg.Type != ArgNumber {
return numCharsArg
}
oldTextLen, startIdx := len(oldText), int(startNumArg.Number)
if startIdx > oldTextLen {
startIdx = oldTextLen + 1
}
endIdx := startIdx + int(numCharsArg.Number)
if endIdx > oldTextLen {
endIdx = oldTextLen + 1
}
if startIdx < 1 || endIdx < 1 {
return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
}
result := oldText[:startIdx-1] + newText + oldText[endIdx-1:]
return newStringFormulaArg(result)
}
// REPT function returns a supplied text string, repeated a specified number
// of times. The syntax of the function is:
//
// REPT(text,number_times)
//
func (fn *formulaFuncs) REPT(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "REPT requires 2 arguments")
}
text := argsList.Front().Value.(formulaArg)
if text.Type != ArgString {
return newErrorFormulaArg(formulaErrorVALUE, "REPT requires first argument to be a string")
}
times := argsList.Back().Value.(formulaArg).ToNumber()
if times.Type != ArgNumber {
return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be a number")
}
if times.Number < 0 {
return newErrorFormulaArg(formulaErrorVALUE, "REPT requires second argument to be >= 0")
}
if times.Number == 0 {
return newStringFormulaArg("")
}
buf := bytes.Buffer{}
for i := 0; i < int(times.Number); i++ {
buf.WriteString(text.String)
}
return newStringFormulaArg(buf.String())
}
// RIGHT function returns a specified number of characters from the end of a
// supplied text string. The syntax of the function is:
//
// RIGHT(text,[num_chars])
//
func (fn *formulaFuncs) RIGHT(argsList *list.List) formulaArg {
return fn.leftRight("RIGHT", argsList)
}
// RIGHTB returns the last character or characters in a text string, based on
// the number of bytes you specify. The syntax of the function is:
//
// RIGHTB(text,[num_bytes])
//
func (fn *formulaFuncs) RIGHTB(argsList *list.List) formulaArg {
return fn.leftRight("RIGHTB", argsList)
}
// SUBSTITUTE function replaces one or more instances of a given text string,
// within an original text string. The syntax of the function is:
//
// SUBSTITUTE(text,old_text,new_text,[instance_num])
//
func (fn *formulaFuncs) SUBSTITUTE(argsList *list.List) formulaArg {
if argsList.Len() != 3 && argsList.Len() != 4 {
return newErrorFormulaArg(formulaErrorVALUE, "SUBSTITUTE requires 3 or 4 arguments")
}
text, oldText := argsList.Front().Value.(formulaArg), argsList.Front().Next().Value.(formulaArg)
newText, instanceNum := argsList.Front().Next().Next().Value.(formulaArg), 0
if argsList.Len() == 3 {
return newStringFormulaArg(strings.Replace(text.Value(), oldText.Value(), newText.Value(), -1))
}
instanceNumArg := argsList.Back().Value.(formulaArg).ToNumber()
if instanceNumArg.Type != ArgNumber {
return instanceNumArg
}
instanceNum = int(instanceNumArg.Number)
if instanceNum < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "instance_num should be > 0")
}
str, oldTextLen, count, chars, pos := text.Value(), len(oldText.Value()), instanceNum, 0, -1
for {
count--
index := strings.Index(str, oldText.Value())
if index == -1 {
pos = -1
break
} else {
pos = index + chars
if count == 0 {
break
}
idx := oldTextLen + index
chars += idx
str = str[idx:]
}
}
if pos == -1 {
return newStringFormulaArg(text.Value())
}
pre, post := text.Value()[:pos], text.Value()[pos+oldTextLen:]
return newStringFormulaArg(pre + newText.Value() + post)
}
// TRIM removes extra spaces (i.e. all spaces except for single spaces between
// words or characters) from a supplied text string. The syntax of the
// function is:
//
// TRIM(text)
//
func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument")
}
return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String))
}
// UNICHAR returns the Unicode character that is referenced by the given
// numeric value. The syntax of the function is:
//
// UNICHAR(number)
//
func (fn *formulaFuncs) UNICHAR(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "UNICHAR requires 1 argument")
}
numArg := argsList.Front().Value.(formulaArg).ToNumber()
if numArg.Type != ArgNumber {
return numArg
}
if numArg.Number <= 0 || numArg.Number > 55295 {
return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE)
}
return newStringFormulaArg(string(rune(numArg.Number)))
}
// UNICODE function returns the code point for the first character of a
// supplied text string. The syntax of the function is:
//
// UNICODE(text)
//
func (fn *formulaFuncs) UNICODE(argsList *list.List) formulaArg {
return fn.code("UNICODE", argsList)
}
// UPPER converts all characters in a supplied text string to upper case. The
// syntax of the function is:
//
// UPPER(text)
//
func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument")
}
return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String))
}
// Conditional Functions
// IF function tests a supplied condition and returns one result if the
// condition evaluates to TRUE, and another result if the condition evaluates
// to FALSE. The syntax of the function is:
//
// IF(logical_test,value_if_true,value_if_false)
//
func (fn *formulaFuncs) IF(argsList *list.List) formulaArg {
if argsList.Len() == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument")
}
if argsList.Len() > 3 {
return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments")
}
token := argsList.Front().Value.(formulaArg)
var (
cond bool
err error
result string
)
switch token.Type {
case ArgString:
if cond, err = strconv.ParseBool(token.String); err != nil {
return newErrorFormulaArg(formulaErrorVALUE, err.Error())
}
if argsList.Len() == 1 {
return newBoolFormulaArg(cond)
}
if cond {
return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String)
}
if argsList.Len() == 3 {
result = argsList.Back().Value.(formulaArg).String
}
}
return newStringFormulaArg(result)
}
// Lookup and Reference Functions
// CHOOSE function returns a value from an array, that corresponds to a
// supplied index number (position). The syntax of the function is:
//
// CHOOSE(index_num,value1,[value2],...)
//
func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg {
if argsList.Len() < 2 {
return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments")
}
idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String)
if err != nil {
return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number")
}
if argsList.Len() <= idx {
return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values")
}
arg := argsList.Front()
for i := 0; i < idx; i++ {
arg = arg.Next()
}
var result formulaArg
switch arg.Value.(formulaArg).Type {
case ArgString:
result = newStringFormulaArg(arg.Value.(formulaArg).String)
case ArgMatrix:
result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix)
}
return result
}
// deepMatchRune finds whether the text deep matches/satisfies the pattern
// string.
func deepMatchRune(str, pattern []rune, simple bool) bool {
for len(pattern) > 0 {
switch pattern[0] {
default:
if len(str) == 0 || str[0] != pattern[0] {
return false
}
case '?':
if len(str) == 0 && !simple {
return false
}
case '*':
return deepMatchRune(str, pattern[1:], simple) ||
(len(str) > 0 && deepMatchRune(str[1:], pattern, simple))
}
str = str[1:]
pattern = pattern[1:]
}
return len(str) == 0 && len(pattern) == 0
}
// matchPattern finds whether the text matches or satisfies the pattern
// string. The pattern supports '*' and '?' wildcards in the pattern string.
func matchPattern(pattern, name string) (matched bool) {
if pattern == "" {
return name == pattern
}
if pattern == "*" {
return true
}
rname, rpattern := make([]rune, 0, len(name)), make([]rune, 0, len(pattern))
for _, r := range name {
rname = append(rname, r)
}
for _, r := range pattern {
rpattern = append(rpattern, r)
}
simple := false // Does extended wildcard '*' and '?' match.
return deepMatchRune(rname, rpattern, simple)
}
// compareFormulaArg compares the left-hand sides and the right-hand sides
// formula arguments by given conditions such as case sensitive, if exact
// match, and make compare result as formula criteria condition type.
func compareFormulaArg(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
if lhs.Type != rhs.Type {
return criteriaErr
}
switch lhs.Type {
case ArgNumber:
if lhs.Number == rhs.Number {
return criteriaEq
}
if lhs.Number < rhs.Number {
return criteriaL
}
return criteriaG
case ArgString:
ls, rs := lhs.String, rhs.String
if !caseSensitive {
ls, rs = strings.ToLower(ls), strings.ToLower(rs)
}
if exactMatch {
match := matchPattern(rs, ls)
if match {
return criteriaEq
}
return criteriaG
}
switch strings.Compare(ls, rs) {
case 1:
return criteriaG
case -1:
return criteriaL
case 0:
return criteriaEq
}
return criteriaErr
case ArgEmpty:
return criteriaEq
case ArgList:
return compareFormulaArgList(lhs, rhs, caseSensitive, exactMatch)
case ArgMatrix:
return compareFormulaArgMatrix(lhs, rhs, caseSensitive, exactMatch)
}
return criteriaErr
}
// compareFormulaArgList compares the left-hand sides and the right-hand sides
// list type formula arguments.
func compareFormulaArgList(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
if len(lhs.List) < len(rhs.List) {
return criteriaL
}
if len(lhs.List) > len(rhs.List) {
return criteriaG
}
for arg := range lhs.List {
criteria := compareFormulaArg(lhs.List[arg], rhs.List[arg], caseSensitive, exactMatch)
if criteria != criteriaEq {
return criteria
}
}
return criteriaEq
}
// compareFormulaArgMatrix compares the left-hand sides and the right-hand sides
// matrix type formula arguments.
func compareFormulaArgMatrix(lhs, rhs formulaArg, caseSensitive, exactMatch bool) byte {
if len(lhs.Matrix) < len(rhs.Matrix) {
return criteriaL
}
if len(lhs.Matrix) > len(rhs.Matrix) {
return criteriaG
}
for i := range lhs.Matrix {
left := lhs.Matrix[i]
right := lhs.Matrix[i]
if len(left) < len(right) {
return criteriaL
}
if len(left) > len(right) {
return criteriaG
}
for arg := range left {
criteria := compareFormulaArg(left[arg], right[arg], caseSensitive, exactMatch)
if criteria != criteriaEq {
return criteria
}
}
}
return criteriaEq
}
// COLUMN function returns the first column number within a supplied reference
// or the number of the current column. The syntax of the function is:
//
// COLUMN([reference])
//
func (fn *formulaFuncs) COLUMN(argsList *list.List) formulaArg {
if argsList.Len() > 1 {
return newErrorFormulaArg(formulaErrorVALUE, "COLUMN requires at most 1 argument")
}
if argsList.Len() == 1 {
if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Col))
}
if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Col))
}
return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
}
col, _, _ := CellNameToCoordinates(fn.cell)
return newNumberFormulaArg(float64(col))
}
// COLUMNS function receives an Excel range and returns the number of columns
// that are contained within the range. The syntax of the function is:
//
// COLUMNS(array)
//
func (fn *formulaFuncs) COLUMNS(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "COLUMNS requires 1 argument")
}
var min, max int
if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
crs := argsList.Front().Value.(formulaArg).cellRanges
for cr := crs.Front(); cr != nil; cr = cr.Next() {
if min == 0 {
min = cr.Value.(cellRange).From.Col
}
if min > cr.Value.(cellRange).From.Col {
min = cr.Value.(cellRange).From.Col
}
if min > cr.Value.(cellRange).To.Col {
min = cr.Value.(cellRange).To.Col
}
if max < cr.Value.(cellRange).To.Col {
max = cr.Value.(cellRange).To.Col
}
if max < cr.Value.(cellRange).From.Col {
max = cr.Value.(cellRange).From.Col
}
}
}
if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
cr := argsList.Front().Value.(formulaArg).cellRefs
for refs := cr.Front(); refs != nil; refs = refs.Next() {
if min == 0 {
min = refs.Value.(cellRef).Col
}
if min > refs.Value.(cellRef).Col {
min = refs.Value.(cellRef).Col
}
if max < refs.Value.(cellRef).Col {
max = refs.Value.(cellRef).Col
}
}
}
if max == TotalColumns {
return newNumberFormulaArg(float64(TotalColumns))
}
result := max - min + 1
if max == min {
if min == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
}
return newNumberFormulaArg(float64(1))
}
return newNumberFormulaArg(float64(result))
}
// HLOOKUP function 'looks up' a given value in the top row of a data array
// (or table), and returns the corresponding value from another row of the
// array. The syntax of the function is:
//
// HLOOKUP(lookup_value,table_array,row_index_num,[range_lookup])
//
func (fn *formulaFuncs) HLOOKUP(argsList *list.List) formulaArg {
if argsList.Len() < 3 {
return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at least 3 arguments")
}
if argsList.Len() > 4 {
return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires at most 4 arguments")
}
lookupValue := argsList.Front().Value.(formulaArg)
tableArray := argsList.Front().Next().Value.(formulaArg)
if tableArray.Type != ArgMatrix {
return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires second argument of table array")
}
rowArg := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
if rowArg.Type != ArgNumber {
return newErrorFormulaArg(formulaErrorVALUE, "HLOOKUP requires numeric row argument")
}
rowIdx, matchIdx, wasExact, exactMatch := int(rowArg.Number)-1, -1, false, false
if argsList.Len() == 4 {
rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
if rangeLookup.Type == ArgError {
return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
}
if rangeLookup.Number == 0 {
exactMatch = true
}
}
row := tableArray.Matrix[0]
if exactMatch || len(tableArray.Matrix) == TotalRows {
start:
for idx, mtx := range row {
lhs := mtx
switch lookupValue.Type {
case ArgNumber:
if !lookupValue.Boolean {
lhs = mtx.ToNumber()
if lhs.Type == ArgError {
lhs = mtx
}
}
case ArgMatrix:
lhs = tableArray
}
if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
matchIdx = idx
wasExact = true
break start
}
}
} else {
matchIdx, wasExact = hlookupBinarySearch(row, lookupValue)
}
if matchIdx == -1 {
return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
}
if rowIdx < 0 || rowIdx >= len(tableArray.Matrix) {
return newErrorFormulaArg(formulaErrorNA, "HLOOKUP has invalid row index")
}
row = tableArray.Matrix[rowIdx]
if wasExact || !exactMatch {
return row[matchIdx]
}
return newErrorFormulaArg(formulaErrorNA, "HLOOKUP no result found")
}
// VLOOKUP function 'looks up' a given value in the left-hand column of a
// data array (or table), and returns the corresponding value from another
// column of the array. The syntax of the function is:
//
// VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])
//
func (fn *formulaFuncs) VLOOKUP(argsList *list.List) formulaArg {
if argsList.Len() < 3 {
return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at least 3 arguments")
}
if argsList.Len() > 4 {
return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires at most 4 arguments")
}
lookupValue := argsList.Front().Value.(formulaArg)
tableArray := argsList.Front().Next().Value.(formulaArg)
if tableArray.Type != ArgMatrix {
return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires second argument of table array")
}
colIdx := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
if colIdx.Type != ArgNumber {
return newErrorFormulaArg(formulaErrorVALUE, "VLOOKUP requires numeric col argument")
}
col, matchIdx, wasExact, exactMatch := int(colIdx.Number)-1, -1, false, false
if argsList.Len() == 4 {
rangeLookup := argsList.Back().Value.(formulaArg).ToBool()
if rangeLookup.Type == ArgError {
return newErrorFormulaArg(formulaErrorVALUE, rangeLookup.Error)
}
if rangeLookup.Number == 0 {
exactMatch = true
}
}
if exactMatch || len(tableArray.Matrix) == TotalRows {
start:
for idx, mtx := range tableArray.Matrix {
lhs := mtx[0]
switch lookupValue.Type {
case ArgNumber:
if !lookupValue.Boolean {
lhs = mtx[0].ToNumber()
if lhs.Type == ArgError {
lhs = mtx[0]
}
}
case ArgMatrix:
lhs = tableArray
}
if compareFormulaArg(lhs, lookupValue, false, exactMatch) == criteriaEq {
matchIdx = idx
wasExact = true
break start
}
}
} else {
matchIdx, wasExact = vlookupBinarySearch(tableArray, lookupValue)
}
if matchIdx == -1 {
return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
}
mtx := tableArray.Matrix[matchIdx]
if col < 0 || col >= len(mtx) {
return newErrorFormulaArg(formulaErrorNA, "VLOOKUP has invalid column index")
}
if wasExact || !exactMatch {
return mtx[col]
}
return newErrorFormulaArg(formulaErrorNA, "VLOOKUP no result found")
}
// vlookupBinarySearch finds the position of a target value when range lookup
// is TRUE, if the data of table array can't guarantee be sorted, it will
// return wrong result.
func vlookupBinarySearch(tableArray, lookupValue formulaArg) (matchIdx int, wasExact bool) {
var low, high, lastMatchIdx int = 0, len(tableArray.Matrix) - 1, -1
for low <= high {
var mid int = low + (high-low)/2
mtx := tableArray.Matrix[mid]
lhs := mtx[0]
switch lookupValue.Type {
case ArgNumber:
if !lookupValue.Boolean {
lhs = mtx[0].ToNumber()
if lhs.Type == ArgError {
lhs = mtx[0]
}
}
case ArgMatrix:
lhs = tableArray
}
result := compareFormulaArg(lhs, lookupValue, false, false)
if result == criteriaEq {
matchIdx, wasExact = mid, true
return
} else if result == criteriaG {
high = mid - 1
} else if result == criteriaL {
matchIdx, low = mid, mid+1
if lhs.Value() != "" {
lastMatchIdx = matchIdx
}
} else {
return -1, false
}
}
matchIdx, wasExact = lastMatchIdx, true
return
}
// vlookupBinarySearch finds the position of a target value when range lookup
// is TRUE, if the data of table array can't guarantee be sorted, it will
// return wrong result.
func hlookupBinarySearch(row []formulaArg, lookupValue formulaArg) (matchIdx int, wasExact bool) {
var low, high, lastMatchIdx int = 0, len(row) - 1, -1
for low <= high {
var mid int = low + (high-low)/2
mtx := row[mid]
result := compareFormulaArg(mtx, lookupValue, false, false)
if result == criteriaEq {
matchIdx, wasExact = mid, true
return
} else if result == criteriaG {
high = mid - 1
} else if result == criteriaL {
low, lastMatchIdx = mid+1, mid
} else {
return -1, false
}
}
matchIdx, wasExact = lastMatchIdx, true
return
}
// LOOKUP function performs an approximate match lookup in a one-column or
// one-row range, and returns the corresponding value from another one-column
// or one-row range. The syntax of the function is:
//
// LOOKUP(lookup_value,lookup_vector,[result_vector])
//
func (fn *formulaFuncs) LOOKUP(argsList *list.List) formulaArg {
if argsList.Len() < 2 {
return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at least 2 arguments")
}
if argsList.Len() > 3 {
return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires at most 3 arguments")
}
lookupValue := argsList.Front().Value.(formulaArg)
lookupVector := argsList.Front().Next().Value.(formulaArg)
if lookupVector.Type != ArgMatrix && lookupVector.Type != ArgList {
return newErrorFormulaArg(formulaErrorVALUE, "LOOKUP requires second argument of table array")
}
cols, matchIdx := lookupCol(lookupVector), -1
for idx, col := range cols {
lhs := lookupValue
switch col.Type {
case ArgNumber:
lhs = lhs.ToNumber()
if !col.Boolean {
if lhs.Type == ArgError {
lhs = lookupValue
}
}
}
if compareFormulaArg(lhs, col, false, false) == criteriaEq {
matchIdx = idx
break
}
}
column := cols
if argsList.Len() == 3 {
column = lookupCol(argsList.Back().Value.(formulaArg))
}
if matchIdx < 0 || matchIdx >= len(column) {
return newErrorFormulaArg(formulaErrorNA, "LOOKUP no result found")
}
return column[matchIdx]
}
// lookupCol extract columns for LOOKUP.
func lookupCol(arr formulaArg) []formulaArg {
col := arr.List
if arr.Type == ArgMatrix {
col = nil
for _, r := range arr.Matrix {
if len(r) > 0 {
col = append(col, r[0])
continue
}
col = append(col, newEmptyFormulaArg())
}
}
return col
}
// ROW function returns the first row number within a supplied reference or
// the number of the current row. The syntax of the function is:
//
// ROW([reference])
//
func (fn *formulaFuncs) ROW(argsList *list.List) formulaArg {
if argsList.Len() > 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ROW requires at most 1 argument")
}
if argsList.Len() == 1 {
if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRanges.Front().Value.(cellRange).From.Row))
}
if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
return newNumberFormulaArg(float64(argsList.Front().Value.(formulaArg).cellRefs.Front().Value.(cellRef).Row))
}
return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
}
_, row, _ := CellNameToCoordinates(fn.cell)
return newNumberFormulaArg(float64(row))
}
// ROWS function takes an Excel range and returns the number of rows that are
// contained within the range. The syntax of the function is:
//
// ROWS(array)
//
func (fn *formulaFuncs) ROWS(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ROWS requires 1 argument")
}
var min, max int
if argsList.Front().Value.(formulaArg).cellRanges != nil && argsList.Front().Value.(formulaArg).cellRanges.Len() > 0 {
crs := argsList.Front().Value.(formulaArg).cellRanges
for cr := crs.Front(); cr != nil; cr = cr.Next() {
if min == 0 {
min = cr.Value.(cellRange).From.Row
}
if min > cr.Value.(cellRange).From.Row {
min = cr.Value.(cellRange).From.Row
}
if min > cr.Value.(cellRange).To.Row {
min = cr.Value.(cellRange).To.Row
}
if max < cr.Value.(cellRange).To.Row {
max = cr.Value.(cellRange).To.Row
}
if max < cr.Value.(cellRange).From.Row {
max = cr.Value.(cellRange).From.Row
}
}
}
if argsList.Front().Value.(formulaArg).cellRefs != nil && argsList.Front().Value.(formulaArg).cellRefs.Len() > 0 {
cr := argsList.Front().Value.(formulaArg).cellRefs
for refs := cr.Front(); refs != nil; refs = refs.Next() {
if min == 0 {
min = refs.Value.(cellRef).Row
}
if min > refs.Value.(cellRef).Row {
min = refs.Value.(cellRef).Row
}
if max < refs.Value.(cellRef).Row {
max = refs.Value.(cellRef).Row
}
}
}
if max == TotalRows {
return newStringFormulaArg(strconv.Itoa(TotalRows))
}
result := max - min + 1
if max == min {
if min == 0 {
return newErrorFormulaArg(formulaErrorVALUE, "invalid reference")
}
return newNumberFormulaArg(float64(1))
}
return newStringFormulaArg(strconv.Itoa(result))
}
// Web Functions
// ENCODEURL function returns a URL-encoded string, replacing certain
// non-alphanumeric characters with the percentage symbol (%) and a
// hexadecimal number. The syntax of the function is:
//
// ENCODEURL(url)
//
func (fn *formulaFuncs) ENCODEURL(argsList *list.List) formulaArg {
if argsList.Len() != 1 {
return newErrorFormulaArg(formulaErrorVALUE, "ENCODEURL requires 1 argument")
}
token := argsList.Front().Value.(formulaArg).Value()
return newStringFormulaArg(strings.Replace(url.QueryEscape(token), "+", "%20", -1))
}
// Financial Functions
// CUMIPMT function calculates the cumulative interest paid on a loan or
// investment, between two specified periods. The syntax of the function is:
//
// CUMIPMT(rate,nper,pv,start_period,end_period,type)
//
func (fn *formulaFuncs) CUMIPMT(argsList *list.List) formulaArg {
return fn.cumip("CUMIPMT", argsList)
}
// CUMPRINC function calculates the cumulative payment on the principal of a
// loan or investment, between two specified periods. The syntax of the
// function is:
//
// CUMPRINC(rate,nper,pv,start_period,end_period,type)
//
func (fn *formulaFuncs) CUMPRINC(argsList *list.List) formulaArg {
return fn.cumip("CUMPRINC", argsList)
}
// cumip is an implementation of the formula function CUMIPMT and CUMPRINC.
func (fn *formulaFuncs) cumip(name string, argsList *list.List) formulaArg {
if argsList.Len() != 6 {
return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 6 arguments", name))
}
rate := argsList.Front().Value.(formulaArg).ToNumber()
if rate.Type != ArgNumber {
return rate
}
nper := argsList.Front().Next().Value.(formulaArg).ToNumber()
if nper.Type != ArgNumber {
return nper
}
pv := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
if pv.Type != ArgNumber {
return pv
}
start := argsList.Back().Prev().Prev().Value.(formulaArg).ToNumber()
if start.Type != ArgNumber {
return start
}
end := argsList.Back().Prev().Value.(formulaArg).ToNumber()
if end.Type != ArgNumber {
return end
}
typ := argsList.Back().Value.(formulaArg).ToNumber()
if typ.Type != ArgNumber {
return typ
}
if typ.Number != 0 && typ.Number != 1 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
if start.Number < 1 || start.Number > end.Number {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
num := 0.0
for per := start.Number; per <= end.Number; per++ {
args := list.New().Init()
args.PushBack(rate)
args.PushBack(newNumberFormulaArg(per))
args.PushBack(nper)
args.PushBack(pv)
args.PushBack(newNumberFormulaArg(0))
args.PushBack(typ)
if name == "CUMIPMT" {
num += fn.IPMT(args).Number
continue
}
num += fn.PPMT(args).Number
}
return newNumberFormulaArg(num)
}
// DB function calculates the depreciation of an asset, using the Fixed
// Declining Balance Method, for each period of the asset's lifetime. The
// syntax of the function is:
//
// DB(cost,salvage,life,period,[month])
//
func (fn *formulaFuncs) DB(argsList *list.List) formulaArg {
if argsList.Len() < 4 {
return newErrorFormulaArg(formulaErrorVALUE, "DB requires at least 4 arguments")
}
if argsList.Len() > 5 {
return newErrorFormulaArg(formulaErrorVALUE, "DB allows at most 5 arguments")
}
cost := argsList.Front().Value.(formulaArg).ToNumber()
if cost.Type != ArgNumber {
return cost
}
salvage := argsList.Front().Next().Value.(formulaArg).ToNumber()
if salvage.Type != ArgNumber {
return salvage
}
life := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
if life.Type != ArgNumber {
return life
}
period := argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber()
if period.Type != ArgNumber {
return period
}
month := newNumberFormulaArg(12)
if argsList.Len() == 5 {
if month = argsList.Back().Value.(formulaArg).ToNumber(); month.Type != ArgNumber {
return month
}
}
if cost.Number == 0 {
return newNumberFormulaArg(0)
}
if (cost.Number <= 0) || ((salvage.Number / cost.Number) < 0) || (life.Number <= 0) || (period.Number < 1) || (month.Number < 1) {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
dr := 1 - math.Pow(salvage.Number/cost.Number, 1/life.Number)
dr = math.Round(dr*1000) / 1000
pd, depreciation := 0.0, 0.0
for per := 1; per <= int(period.Number); per++ {
if per == 1 {
depreciation = cost.Number * dr * month.Number / 12
} else if per == int(life.Number+1) {
depreciation = (cost.Number - pd) * dr * (12 - month.Number) / 12
} else {
depreciation = (cost.Number - pd) * dr
}
pd += depreciation
}
return newNumberFormulaArg(depreciation)
}
// DDB function calculates the depreciation of an asset, using the Double
// Declining Balance Method, or another specified depreciation rate. The
// syntax of the function is:
//
// DDB(cost,salvage,life,period,[factor])
//
func (fn *formulaFuncs) DDB(argsList *list.List) formulaArg {
if argsList.Len() < 4 {
return newErrorFormulaArg(formulaErrorVALUE, "DDB requires at least 4 arguments")
}
if argsList.Len() > 5 {
return newErrorFormulaArg(formulaErrorVALUE, "DDB allows at most 5 arguments")
}
cost := argsList.Front().Value.(formulaArg).ToNumber()
if cost.Type != ArgNumber {
return cost
}
salvage := argsList.Front().Next().Value.(formulaArg).ToNumber()
if salvage.Type != ArgNumber {
return salvage
}
life := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
if life.Type != ArgNumber {
return life
}
period := argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber()
if period.Type != ArgNumber {
return period
}
factor := newNumberFormulaArg(2)
if argsList.Len() == 5 {
if factor = argsList.Back().Value.(formulaArg).ToNumber(); factor.Type != ArgNumber {
return factor
}
}
if cost.Number == 0 {
return newNumberFormulaArg(0)
}
if (cost.Number <= 0) || ((salvage.Number / cost.Number) < 0) || (life.Number <= 0) || (period.Number < 1) || (factor.Number <= 0.0) || (period.Number > life.Number) {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
pd, depreciation := 0.0, 0.0
for per := 1; per <= int(period.Number); per++ {
depreciation = math.Min((cost.Number-pd)*(factor.Number/life.Number), (cost.Number - salvage.Number - pd))
pd += depreciation
}
return newNumberFormulaArg(depreciation)
}
// DOLLARDE function converts a dollar value in fractional notation, into a
// dollar value expressed as a decimal. The syntax of the function is:
//
// DOLLARDE(fractional_dollar,fraction)
//
func (fn *formulaFuncs) DOLLARDE(argsList *list.List) formulaArg {
return fn.dollar("DOLLARDE", argsList)
}
// DOLLARFR function converts a dollar value in decimal notation, into a
// dollar value that is expressed in fractional notation. The syntax of the
// function is:
//
// DOLLARFR(decimal_dollar,fraction)
//
func (fn *formulaFuncs) DOLLARFR(argsList *list.List) formulaArg {
return fn.dollar("DOLLARFR", argsList)
}
// dollar is an implementation of the formula function DOLLARDE and DOLLARFR.
func (fn *formulaFuncs) dollar(name string, argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 2 arguments", name))
}
dollar := argsList.Front().Value.(formulaArg).ToNumber()
if dollar.Type != ArgNumber {
return dollar
}
frac := argsList.Back().Value.(formulaArg).ToNumber()
if frac.Type != ArgNumber {
return frac
}
if frac.Number < 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
if frac.Number == 0 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
cents := math.Mod(dollar.Number, 1)
if name == "DOLLARDE" {
cents /= frac.Number
cents *= math.Pow(10, math.Ceil(math.Log10(frac.Number)))
} else {
cents *= frac.Number
cents *= math.Pow(10, -math.Ceil(math.Log10(frac.Number)))
}
return newNumberFormulaArg(math.Floor(dollar.Number) + cents)
}
// EFFECT function returns the effective annual interest rate for a given
// nominal interest rate and number of compounding periods per year. The
// syntax of the function is:
//
// EFFECT(nominal_rate,npery)
//
func (fn *formulaFuncs) EFFECT(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "EFFECT requires 2 arguments")
}
rate := argsList.Front().Value.(formulaArg).ToNumber()
if rate.Type != ArgNumber {
return rate
}
npery := argsList.Back().Value.(formulaArg).ToNumber()
if npery.Type != ArgNumber {
return npery
}
if rate.Number <= 0 || npery.Number < 1 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return newNumberFormulaArg(math.Pow((1+rate.Number/npery.Number), npery.Number) - 1)
}
// FV function calculates the Future Value of an investment with periodic
// constant payments and a constant interest rate. The syntax of the function
// is:
//
// FV(rate,nper,[pmt],[pv],[type])
//
func (fn *formulaFuncs) FV(argsList *list.List) formulaArg {
if argsList.Len() < 3 {
return newErrorFormulaArg(formulaErrorVALUE, "FV requires at least 3 arguments")
}
if argsList.Len() > 5 {
return newErrorFormulaArg(formulaErrorVALUE, "FV allows at most 5 arguments")
}
rate := argsList.Front().Value.(formulaArg).ToNumber()
if rate.Type != ArgNumber {
return rate
}
nper := argsList.Front().Next().Value.(formulaArg).ToNumber()
if nper.Type != ArgNumber {
return nper
}
pmt := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
if pmt.Type != ArgNumber {
return pmt
}
pv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0)
if argsList.Len() >= 4 {
if pv = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); pv.Type != ArgNumber {
return pv
}
}
if argsList.Len() == 5 {
if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber {
return typ
}
}
if typ.Number != 0 && typ.Number != 1 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
if rate.Number != 0 {
return newNumberFormulaArg(-pv.Number*math.Pow(1+rate.Number, nper.Number) - pmt.Number*(1+rate.Number*typ.Number)*(math.Pow(1+rate.Number, nper.Number)-1)/rate.Number)
}
return newNumberFormulaArg(-pv.Number - pmt.Number*nper.Number)
}
// FVSCHEDULE function calculates the Future Value of an investment with a
// variable interest rate. The syntax of the function is:
//
// FVSCHEDULE(principal,schedule)
//
func (fn *formulaFuncs) FVSCHEDULE(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "FVSCHEDULE requires 2 arguments")
}
pri := argsList.Front().Value.(formulaArg).ToNumber()
if pri.Type != ArgNumber {
return pri
}
principal := pri.Number
for _, arg := range argsList.Back().Value.(formulaArg).ToList() {
if arg.Value() == "" {
continue
}
rate := arg.ToNumber()
if rate.Type != ArgNumber {
return rate
}
principal *= (1 + rate.Number)
}
return newNumberFormulaArg(principal)
}
// IPMT function calculates the interest payment, during a specific period of a
// loan or investment that is paid in constant periodic payments, with a
// constant interest rate. The syntax of the function is:
//
// IPMT(rate,per,nper,pv,[fv],[type])
//
func (fn *formulaFuncs) IPMT(argsList *list.List) formulaArg {
return fn.ipmt("IPMT", argsList)
}
// ipmt is an implementation of the formula function IPMT and PPMT.
func (fn *formulaFuncs) ipmt(name string, argsList *list.List) formulaArg {
if argsList.Len() < 4 {
return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 4 arguments", name))
}
if argsList.Len() > 6 {
return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s allows at most 6 arguments", name))
}
rate := argsList.Front().Value.(formulaArg).ToNumber()
if rate.Type != ArgNumber {
return rate
}
per := argsList.Front().Next().Value.(formulaArg).ToNumber()
if per.Type != ArgNumber {
return per
}
nper := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
if nper.Type != ArgNumber {
return nper
}
pv := argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber()
if pv.Type != ArgNumber {
return pv
}
fv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0)
if argsList.Len() >= 5 {
if fv = argsList.Front().Next().Next().Next().Next().Value.(formulaArg).ToNumber(); fv.Type != ArgNumber {
return fv
}
}
if argsList.Len() == 6 {
if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber {
return typ
}
}
if typ.Number != 0 && typ.Number != 1 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
if per.Number <= 0 || per.Number > nper.Number {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
args := list.New().Init()
args.PushBack(rate)
args.PushBack(nper)
args.PushBack(pv)
args.PushBack(fv)
args.PushBack(typ)
pmt, capital, interest, principal := fn.PMT(args), pv.Number, 0.0, 0.0
for i := 1; i <= int(per.Number); i++ {
if typ.Number != 0 && i == 1 {
interest = 0
} else {
interest = -capital * rate.Number
}
principal = pmt.Number - interest
capital += principal
}
if name == "IPMT" {
return newNumberFormulaArg(interest)
}
return newNumberFormulaArg(principal)
}
// IRR function returns the Internal Rate of Return for a supplied series of
// periodic cash flows (i.e. an initial investment value and a series of net
// income values). The syntax of the function is:
//
// IRR(values,[guess])
//
func (fn *formulaFuncs) IRR(argsList *list.List) formulaArg {
if argsList.Len() < 1 {
return newErrorFormulaArg(formulaErrorVALUE, "IRR requires at least 1 argument")
}
if argsList.Len() > 2 {
return newErrorFormulaArg(formulaErrorVALUE, "IRR allows at most 2 arguments")
}
values, guess := argsList.Front().Value.(formulaArg).ToList(), newNumberFormulaArg(0.1)
if argsList.Len() > 1 {
if guess = argsList.Back().Value.(formulaArg).ToNumber(); guess.Type != ArgNumber {
return guess
}
}
x1, x2 := newNumberFormulaArg(0), guess
args := list.New().Init()
args.PushBack(x1)
for _, v := range values {
args.PushBack(v)
}
f1 := fn.NPV(args)
args.Front().Value = x2
f2 := fn.NPV(args)
for i := 0; i < maxFinancialIterations; i++ {
if f1.Number*f2.Number < 0 {
break
}
if math.Abs(f1.Number) < math.Abs((f2.Number)) {
x1.Number += 1.6 * (x1.Number - x2.Number)
args.Front().Value = x1
f1 = fn.NPV(args)
continue
}
x2.Number += 1.6 * (x2.Number - x1.Number)
args.Front().Value = x2
f2 = fn.NPV(args)
}
if f1.Number*f2.Number > 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
args.Front().Value = x1
f := fn.NPV(args)
var rtb, dx, xMid, fMid float64
if f.Number < 0 {
rtb = x1.Number
dx = x2.Number - x1.Number
} else {
rtb = x2.Number
dx = x1.Number - x2.Number
}
for i := 0; i < maxFinancialIterations; i++ {
dx *= 0.5
xMid = rtb + dx
args.Front().Value = newNumberFormulaArg(xMid)
fMid = fn.NPV(args).Number
if fMid <= 0 {
rtb = xMid
}
if math.Abs(fMid) < financialPercision || math.Abs(dx) < financialPercision {
break
}
}
return newNumberFormulaArg(xMid)
}
// ISPMT function calculates the interest paid during a specific period of a
// loan or investment. The syntax of the function is:
//
// ISPMT(rate,per,nper,pv)
//
func (fn *formulaFuncs) ISPMT(argsList *list.List) formulaArg {
if argsList.Len() != 4 {
return newErrorFormulaArg(formulaErrorVALUE, "ISPMT requires 4 arguments")
}
rate := argsList.Front().Value.(formulaArg).ToNumber()
if rate.Type != ArgNumber {
return rate
}
per := argsList.Front().Next().Value.(formulaArg).ToNumber()
if per.Type != ArgNumber {
return per
}
nper := argsList.Back().Prev().Value.(formulaArg).ToNumber()
if nper.Type != ArgNumber {
return nper
}
pv := argsList.Back().Value.(formulaArg).ToNumber()
if pv.Type != ArgNumber {
return pv
}
pr, payment, num := pv.Number, pv.Number/nper.Number, 0.0
for i := 0; i <= int(per.Number); i++ {
num = rate.Number * pr * -1
pr -= payment
if i == int(nper.Number) {
num = 0
}
}
return newNumberFormulaArg(num)
}
// MIRR function returns the Modified Internal Rate of Return for a supplied
// series of periodic cash flows (i.e. a set of values, which includes an
// initial investment value and a series of net income values). The syntax of
// the function is:
//
// MIRR(values,finance_rate,reinvest_rate)
//
func (fn *formulaFuncs) MIRR(argsList *list.List) formulaArg {
if argsList.Len() != 3 {
return newErrorFormulaArg(formulaErrorVALUE, "MIRR requires 3 arguments")
}
values := argsList.Front().Value.(formulaArg).ToList()
financeRate := argsList.Front().Next().Value.(formulaArg).ToNumber()
if financeRate.Type != ArgNumber {
return financeRate
}
reinvestRate := argsList.Back().Value.(formulaArg).ToNumber()
if reinvestRate.Type != ArgNumber {
return reinvestRate
}
n, fr, rr, npvPos, npvNeg := len(values), 1+financeRate.Number, 1+reinvestRate.Number, 0.0, 0.0
for i, v := range values {
val := v.ToNumber()
if val.Number >= 0 {
npvPos += val.Number / math.Pow(float64(rr), float64(i))
continue
}
npvNeg += val.Number / math.Pow(float64(fr), float64(i))
}
if npvNeg == 0 || npvPos == 0 || reinvestRate.Number <= -1 {
return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV)
}
return newNumberFormulaArg(math.Pow(-npvPos*math.Pow(rr, float64(n))/(npvNeg*rr), 1/(float64(n)-1)) - 1)
}
// NOMINAL function returns the nominal interest rate for a given effective
// interest rate and number of compounding periods per year. The syntax of
// the function is:
//
// NOMINAL(effect_rate,npery)
//
func (fn *formulaFuncs) NOMINAL(argsList *list.List) formulaArg {
if argsList.Len() != 2 {
return newErrorFormulaArg(formulaErrorVALUE, "NOMINAL requires 2 arguments")
}
rate := argsList.Front().Value.(formulaArg).ToNumber()
if rate.Type != ArgNumber {
return rate
}
npery := argsList.Back().Value.(formulaArg).ToNumber()
if npery.Type != ArgNumber {
return npery
}
if rate.Number <= 0 || npery.Number < 1 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return newNumberFormulaArg(npery.Number * (math.Pow(rate.Number+1, 1/npery.Number) - 1))
}
// NPER function calculates the number of periods required to pay off a loan,
// for a constant periodic payment and a constant interest rate. The syntax
// of the function is:
//
// NPER(rate,pmt,pv,[fv],[type])
//
func (fn *formulaFuncs) NPER(argsList *list.List) formulaArg {
if argsList.Len() < 3 {
return newErrorFormulaArg(formulaErrorVALUE, "NPER requires at least 3 arguments")
}
if argsList.Len() > 5 {
return newErrorFormulaArg(formulaErrorVALUE, "NPER allows at most 5 arguments")
}
rate := argsList.Front().Value.(formulaArg).ToNumber()
if rate.Type != ArgNumber {
return rate
}
pmt := argsList.Front().Next().Value.(formulaArg).ToNumber()
if pmt.Type != ArgNumber {
return pmt
}
pv := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
if pv.Type != ArgNumber {
return pv
}
fv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0)
if argsList.Len() >= 4 {
if fv = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); fv.Type != ArgNumber {
return fv
}
}
if argsList.Len() == 5 {
if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber {
return typ
}
}
if typ.Number != 0 && typ.Number != 1 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
if pmt.Number == 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
if rate.Number != 0 {
p := math.Log((pmt.Number*(1+rate.Number*typ.Number)/rate.Number-fv.Number)/(pv.Number+pmt.Number*(1+rate.Number*typ.Number)/rate.Number)) / math.Log(1+rate.Number)
return newNumberFormulaArg(p)
}
return newNumberFormulaArg((-pv.Number - fv.Number) / pmt.Number)
}
// NPV function calculates the Net Present Value of an investment, based on a
// supplied discount rate, and a series of future payments and income. The
// syntax of the function is:
//
// NPV(rate,value1,[value2],[value3],...)
//
func (fn *formulaFuncs) NPV(argsList *list.List) formulaArg {
if argsList.Len() < 2 {
return newErrorFormulaArg(formulaErrorVALUE, "NPV requires at least 2 arguments")
}
rate := argsList.Front().Value.(formulaArg).ToNumber()
if rate.Type != ArgNumber {
return rate
}
val, i := 0.0, 1
for arg := argsList.Front().Next(); arg != nil; arg = arg.Next() {
num := arg.Value.(formulaArg).ToNumber()
if num.Type != ArgNumber {
continue
}
val += num.Number / math.Pow(1+rate.Number, float64(i))
i++
}
return newNumberFormulaArg(val)
}
// PDURATION function calculates the number of periods required for an
// investment to reach a specified future value. The syntax of the function
// is:
//
// PDURATION(rate,pv,fv)
//
func (fn *formulaFuncs) PDURATION(argsList *list.List) formulaArg {
if argsList.Len() != 3 {
return newErrorFormulaArg(formulaErrorVALUE, "PDURATION requires 3 arguments")
}
rate := argsList.Front().Value.(formulaArg).ToNumber()
if rate.Type != ArgNumber {
return rate
}
pv := argsList.Front().Next().Value.(formulaArg).ToNumber()
if pv.Type != ArgNumber {
return pv
}
fv := argsList.Back().Value.(formulaArg).ToNumber()
if fv.Type != ArgNumber {
return fv
}
if rate.Number <= 0 || pv.Number <= 0 || fv.Number <= 0 {
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
}
return newNumberFormulaArg((math.Log(fv.Number) - math.Log(pv.Number)) / math.Log(1+rate.Number))
}
// PMT function calculates the constant periodic payment required to pay off
// (or partially pay off) a loan or investment, with a constant interest
// rate, over a specified period. The syntax of the function is:
//
// PMT(rate,nper,pv,[fv],[type])
//
func (fn *formulaFuncs) PMT(argsList *list.List) formulaArg {
if argsList.Len() < 3 {
return newErrorFormulaArg(formulaErrorVALUE, "PMT requires at least 3 arguments")
}
if argsList.Len() > 5 {
return newErrorFormulaArg(formulaErrorVALUE, "PMT allows at most 5 arguments")
}
rate := argsList.Front().Value.(formulaArg).ToNumber()
if rate.Type != ArgNumber {
return rate
}
nper := argsList.Front().Next().Value.(formulaArg).ToNumber()
if nper.Type != ArgNumber {
return nper
}
pv := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
if pv.Type != ArgNumber {
return pv
}
fv, typ := newNumberFormulaArg(0), newNumberFormulaArg(0)
if argsList.Len() >= 4 {
if fv = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); fv.Type != ArgNumber {
return fv
}
}
if argsList.Len() == 5 {
if typ = argsList.Back().Value.(formulaArg).ToNumber(); typ.Type != ArgNumber {
return typ
}
}
if typ.Number != 0 && typ.Number != 1 {
return newErrorFormulaArg(formulaErrorNA, formulaErrorNA)
}
if rate.Number != 0 {
p := (-fv.Number - pv.Number*math.Pow((1+rate.Number), nper.Number)) / (1 + rate.Number*typ.Number) / ((math.Pow((1+rate.Number), nper.Number) - 1) / rate.Number)
return newNumberFormulaArg(p)
}
return newNumberFormulaArg((-pv.Number - fv.Number) / nper.Number)
}
// PPMT function calculates the payment on the principal, during a specific
// period of a loan or investment that is paid in constant periodic payments,
// with a constant interest rate. The syntax of the function is:
//
// PPMT(rate,per,nper,pv,[fv],[type])
//
func (fn *formulaFuncs) PPMT(argsList *list.List) formulaArg {
return fn.ipmt("PPMT", argsList)
}