// Copyright 2016 - 2020 The excelize Authors. All rights reserved. Use of // this source code is governed by a BSD-style license that can be found in // the LICENSE file. // // Package excelize providing a set of functions that allow you to write to // and read from XLSX / XLSM / XLTM files. Supports reading and writing // spreadsheet documents generated by Microsoft Exce™ 2007 and later. Supports // complex components by high compatibility, and provided streaming API for // generating or reading data from a worksheet with huge amounts of data. This // library needs Go version 1.10 or later. package excelize import ( "bytes" "container/list" "errors" "fmt" "math" "math/rand" "reflect" "regexp" "sort" "strconv" "strings" "time" "unicode" "github.com/xuri/efp" ) // Excel formula errors const ( formulaErrorDIV = "#DIV/0!" formulaErrorNAME = "#NAME?" formulaErrorNA = "#N/A" formulaErrorNUM = "#NUM!" formulaErrorVALUE = "#VALUE!" formulaErrorREF = "#REF!" formulaErrorNULL = "#NULL" formulaErrorSPILL = "#SPILL!" formulaErrorCALC = "#CALC!" formulaErrorGETTINGDATA = "#GETTING_DATA" ) // Numeric precision correct numeric values as legacy Excel application // https://en.wikipedia.org/wiki/Numeric_precision_in_Microsoft_Excel In the // top figure the fraction 1/9000 in Excel is displayed. Although this number // has a decimal representation that is an infinite string of ones, Excel // displays only the leading 15 figures. In the second line, the number one // is added to the fraction, and again Excel displays only 15 figures. const numericPrecision = 1000000000000000 // cellRef defines the structure of a cell reference. type cellRef struct { Col int Row int Sheet string } // cellRef defines the structure of a cell range. type cellRange struct { From cellRef To cellRef } // formula criteria condition enumeration. const ( _ byte = iota criteriaEq criteriaLe criteriaGe criteriaL criteriaG criteriaBeg criteriaEnd ) // formulaCriteria defined formula criteria parser result. type formulaCriteria struct { Type byte Condition string } // ArgType is the type if formula argument type. type ArgType byte // Formula argument types enumeration. const ( ArgUnknown ArgType = iota ArgNumber ArgString ArgList ArgMatrix ArgError ArgEmpty ) // formulaArg is the argument of a formula or function. type formulaArg struct { Number float64 String string List []formulaArg Matrix [][]formulaArg Boolean bool Error string Type ArgType } // Value returns a string data type of the formula argument. func (fa formulaArg) Value() (value string) { switch fa.Type { case ArgNumber: if fa.Boolean { if fa.Number == 0 { return "FALSE" } return "TRUE" } return fmt.Sprintf("%g", fa.Number) case ArgString: return fa.String case ArgError: return fa.Error } return } // ToNumber returns a formula argument with number data type. func (fa formulaArg) ToNumber() formulaArg { var n float64 var err error switch fa.Type { case ArgString: n, err = strconv.ParseFloat(fa.String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } case ArgNumber: n = fa.Number } return newNumberFormulaArg(n) } // formulaFuncs is the type of the formula functions. type formulaFuncs struct{} // tokenPriority defined basic arithmetic operator priority. var tokenPriority = map[string]int{ "^": 5, "*": 4, "/": 4, "+": 3, "-": 3, "=": 2, "<>": 2, "<": 2, "<=": 2, ">": 2, ">=": 2, "&": 1, } // CalcCellValue provides a function to get calculated cell value. This // feature is currently in working processing. Array formula, table formula // and some other formulas are not supported currently. // // Supported formulas: // // ABS // ACOS // ACOSH // ACOT // ACOTH // AND // ARABIC // ASIN // ASINH // ATAN2 // ATANH // BASE // CEILING // CEILING.MATH // CEILING.PRECISE // CHOOSE // CLEAN // COMBIN // COMBINA // COS // COSH // COT // COTH // COUNTA // CSC // CSCH // DATE // DECIMAL // DEGREES // EVEN // EXP // FACT // FACTDOUBLE // FLOOR // FLOOR.MATH // FLOOR.PRECISE // GCD // IF // INT // ISBLANK // ISERR // ISERROR // ISEVEN // ISNA // ISNONTEXT // ISNUMBER // ISODD // ISO.CEILING // LCM // LEN // LN // LOG // LOG10 // LOWER // MDETERM // MEDIAN // MOD // MROUND // MULTINOMIAL // MUNIT // NA // ODD // OR // PI // POWER // PRODUCT // PROPER // QUOTIENT // RADIANS // RAND // RANDBETWEEN // ROUND // ROUNDDOWN // ROUNDUP // SEC // SECH // SIGN // SIN // SINH // SQRT // SQRTPI // SUM // SUMIF // SUMSQ // TAN // TANH // TRIM // TRUNC // UPPER // func (f *File) CalcCellValue(sheet, cell string) (result string, err error) { var ( formula string token efp.Token ) if formula, err = f.GetCellFormula(sheet, cell); err != nil { return } ps := efp.ExcelParser() tokens := ps.Parse(formula) if tokens == nil { return } if token, err = f.evalInfixExp(sheet, tokens); err != nil { return } result = token.TValue isNum, precision := isNumeric(result) if isNum && precision > 15 { num, _ := roundPrecision(result) result = strings.ToUpper(num) } return } // getPriority calculate arithmetic operator priority. func getPriority(token efp.Token) (pri int) { pri, _ = tokenPriority[token.TValue] if token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix { pri = 6 } if token.TSubType == efp.TokenSubTypeStart && token.TType == efp.TokenTypeSubexpression { // ( pri = 0 } return } // newNumberFormulaArg constructs a number formula argument. func newNumberFormulaArg(n float64) formulaArg { if math.IsNaN(n) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } return formulaArg{Type: ArgNumber, Number: n} } // newStringFormulaArg constructs a string formula argument. func newStringFormulaArg(s string) formulaArg { return formulaArg{Type: ArgString, String: s} } // newMatrixFormulaArg constructs a matrix formula argument. func newMatrixFormulaArg(m [][]formulaArg) formulaArg { return formulaArg{Type: ArgMatrix, Matrix: m} } // newBoolFormulaArg constructs a boolean formula argument. func newBoolFormulaArg(b bool) formulaArg { var n float64 if b { n = 1 } return formulaArg{Type: ArgNumber, Number: n, Boolean: true} } // newErrorFormulaArg create an error formula argument of a given type with a specified error message. func newErrorFormulaArg(formulaError, msg string) formulaArg { return formulaArg{Type: ArgError, String: formulaError, Error: msg} } // evalInfixExp evaluate syntax analysis by given infix expression after // lexical analysis. Evaluate an infix expression containing formulas by // stacks: // // opd - Operand // opt - Operator // opf - Operation formula // opfd - Operand of the operation formula // opft - Operator of the operation formula // // Evaluate arguments of the operation formula by list: // // args - Arguments of the operation formula // // TODO: handle subtypes: Nothing, Text, Logical, Error, Concatenation, Intersection, Union // func (f *File) evalInfixExp(sheet string, tokens []efp.Token) (efp.Token, error) { var err error opdStack, optStack, opfStack, opfdStack, opftStack := NewStack(), NewStack(), NewStack(), NewStack(), NewStack() argsList := list.New() for i := 0; i < len(tokens); i++ { token := tokens[i] // out of function stack if opfStack.Len() == 0 { if err = f.parseToken(sheet, token, opdStack, optStack); err != nil { return efp.Token{}, err } } // function start if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStart { opfStack.Push(token) continue } // in function stack, walk 2 token at once if opfStack.Len() > 0 { var nextToken efp.Token if i+1 < len(tokens) { nextToken = tokens[i+1] } // current token is args or range, skip next token, order required: parse reference first if token.TSubType == efp.TokenSubTypeRange { if !opftStack.Empty() { // parse reference: must reference at here result, err := f.parseReference(sheet, token.TValue) if err != nil { return efp.Token{TValue: formulaErrorNAME}, err } if result.Type != ArgString { return efp.Token{}, errors.New(formulaErrorVALUE) } opfdStack.Push(efp.Token{ TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber, TValue: result.String, }) continue } if nextToken.TType == efp.TokenTypeArgument || nextToken.TType == efp.TokenTypeFunction { // parse reference: reference or range at here result, err := f.parseReference(sheet, token.TValue) if err != nil { return efp.Token{TValue: formulaErrorNAME}, err } if result.Type == ArgUnknown { return efp.Token{}, errors.New(formulaErrorVALUE) } argsList.PushBack(result) continue } } // check current token is opft if err = f.parseToken(sheet, token, opfdStack, opftStack); err != nil { return efp.Token{}, err } // current token is arg if token.TType == efp.TokenTypeArgument { for !opftStack.Empty() { // calculate trigger topOpt := opftStack.Peek().(efp.Token) if err := calculate(opfdStack, topOpt); err != nil { return efp.Token{}, err } opftStack.Pop() } if !opfdStack.Empty() { argsList.PushBack(formulaArg{ String: opfdStack.Pop().(efp.Token).TValue, Type: ArgString, }) } continue } // current token is logical if token.TType == efp.OperatorsInfix && token.TSubType == efp.TokenSubTypeLogical { } // current token is text if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeText { argsList.PushBack(formulaArg{ String: token.TValue, Type: ArgString, }) } // current token is function stop if token.TType == efp.TokenTypeFunction && token.TSubType == efp.TokenSubTypeStop { for !opftStack.Empty() { // calculate trigger topOpt := opftStack.Peek().(efp.Token) if err := calculate(opfdStack, topOpt); err != nil { return efp.Token{}, err } opftStack.Pop() } // push opfd to args if opfdStack.Len() > 0 { argsList.PushBack(formulaArg{ String: opfdStack.Pop().(efp.Token).TValue, Type: ArgString, }) } // call formula function to evaluate arg := callFuncByName(&formulaFuncs{}, strings.NewReplacer( "_xlfn", "", ".", "").Replace(opfStack.Peek().(efp.Token).TValue), []reflect.Value{reflect.ValueOf(argsList)}) if arg.Type == ArgError { return efp.Token{}, errors.New(arg.Value()) } argsList.Init() opfStack.Pop() if opfStack.Len() > 0 { // still in function stack if nextToken.TType == efp.TokenTypeOperatorInfix { // mathematics calculate in formula function opfdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) } else { argsList.PushBack(arg) } } else { opdStack.Push(efp.Token{TValue: arg.Value(), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) } } } } for optStack.Len() != 0 { topOpt := optStack.Peek().(efp.Token) if err = calculate(opdStack, topOpt); err != nil { return efp.Token{}, err } optStack.Pop() } if opdStack.Len() == 0 { return efp.Token{}, errors.New("formula not valid") } return opdStack.Peek().(efp.Token), err } // calcPow evaluate exponentiation arithmetic operations. func calcPow(rOpd, lOpd string, opdStack *Stack) error { lOpdVal, err := strconv.ParseFloat(lOpd, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd, 64) if err != nil { return err } result := math.Pow(lOpdVal, rOpdVal) opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcEq evaluate equal arithmetic operations. func calcEq(rOpd, lOpd string, opdStack *Stack) error { opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd == lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcNEq evaluate not equal arithmetic operations. func calcNEq(rOpd, lOpd string, opdStack *Stack) error { opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpd != lOpd)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcL evaluate less than arithmetic operations. func calcL(rOpd, lOpd string, opdStack *Stack) error { lOpdVal, err := strconv.ParseFloat(lOpd, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd, 64) if err != nil { return err } opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal > lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcLe evaluate less than or equal arithmetic operations. func calcLe(rOpd, lOpd string, opdStack *Stack) error { lOpdVal, err := strconv.ParseFloat(lOpd, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd, 64) if err != nil { return err } opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal >= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcG evaluate greater than or equal arithmetic operations. func calcG(rOpd, lOpd string, opdStack *Stack) error { lOpdVal, err := strconv.ParseFloat(lOpd, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd, 64) if err != nil { return err } opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal < lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcGe evaluate greater than or equal arithmetic operations. func calcGe(rOpd, lOpd string, opdStack *Stack) error { lOpdVal, err := strconv.ParseFloat(lOpd, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd, 64) if err != nil { return err } opdStack.Push(efp.Token{TValue: strings.ToUpper(strconv.FormatBool(rOpdVal <= lOpdVal)), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcSplice evaluate splice '&' operations. func calcSplice(rOpd, lOpd string, opdStack *Stack) error { opdStack.Push(efp.Token{TValue: lOpd + rOpd, TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcAdd evaluate addition arithmetic operations. func calcAdd(rOpd, lOpd string, opdStack *Stack) error { lOpdVal, err := strconv.ParseFloat(lOpd, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd, 64) if err != nil { return err } result := lOpdVal + rOpdVal opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcSubtract evaluate subtraction arithmetic operations. func calcSubtract(rOpd, lOpd string, opdStack *Stack) error { lOpdVal, err := strconv.ParseFloat(lOpd, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd, 64) if err != nil { return err } result := lOpdVal - rOpdVal opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcMultiply evaluate multiplication arithmetic operations. func calcMultiply(rOpd, lOpd string, opdStack *Stack) error { lOpdVal, err := strconv.ParseFloat(lOpd, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd, 64) if err != nil { return err } result := lOpdVal * rOpdVal opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calcDiv evaluate division arithmetic operations. func calcDiv(rOpd, lOpd string, opdStack *Stack) error { lOpdVal, err := strconv.ParseFloat(lOpd, 64) if err != nil { return err } rOpdVal, err := strconv.ParseFloat(rOpd, 64) if err != nil { return err } result := lOpdVal / rOpdVal if rOpdVal == 0 { return errors.New(formulaErrorDIV) } opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) return nil } // calculate evaluate basic arithmetic operations. func calculate(opdStack *Stack, opt efp.Token) error { if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorPrefix { if opdStack.Len() < 1 { return errors.New("formula not valid") } opd := opdStack.Pop().(efp.Token) opdVal, err := strconv.ParseFloat(opd.TValue, 64) if err != nil { return err } result := 0 - opdVal opdStack.Push(efp.Token{TValue: fmt.Sprintf("%g", result), TType: efp.TokenTypeOperand, TSubType: efp.TokenSubTypeNumber}) } tokenCalcFunc := map[string]func(rOpd, lOpd string, opdStack *Stack) error{ "^": calcPow, "*": calcMultiply, "/": calcDiv, "+": calcAdd, "=": calcEq, "<>": calcNEq, "<": calcL, "<=": calcLe, ">": calcG, ">=": calcGe, "&": calcSplice, } if opt.TValue == "-" && opt.TType == efp.TokenTypeOperatorInfix { if opdStack.Len() < 2 { return errors.New("formula not valid") } rOpd := opdStack.Pop().(efp.Token) lOpd := opdStack.Pop().(efp.Token) if err := calcSubtract(rOpd.TValue, lOpd.TValue, opdStack); err != nil { return err } } fn, ok := tokenCalcFunc[opt.TValue] if ok { if opdStack.Len() < 2 { return errors.New("formula not valid") } rOpd := opdStack.Pop().(efp.Token) lOpd := opdStack.Pop().(efp.Token) if err := fn(rOpd.TValue, lOpd.TValue, opdStack); err != nil { return err } } return nil } // parseOperatorPrefixToken parse operator prefix token. func (f *File) parseOperatorPrefixToken(optStack, opdStack *Stack, token efp.Token) (err error) { if optStack.Len() == 0 { optStack.Push(token) } else { tokenPriority := getPriority(token) topOpt := optStack.Peek().(efp.Token) topOptPriority := getPriority(topOpt) if tokenPriority > topOptPriority { optStack.Push(token) } else { for tokenPriority <= topOptPriority { optStack.Pop() if err = calculate(opdStack, topOpt); err != nil { return } if optStack.Len() > 0 { topOpt = optStack.Peek().(efp.Token) topOptPriority = getPriority(topOpt) continue } break } optStack.Push(token) } } return } // isOperatorPrefixToken determine if the token is parse operator prefix // token. func isOperatorPrefixToken(token efp.Token) bool { _, ok := tokenPriority[token.TValue] if (token.TValue == "-" && token.TType == efp.TokenTypeOperatorPrefix) || ok { return true } return false } // getDefinedNameRefTo convert defined name to reference range. func (f *File) getDefinedNameRefTo(definedNameName string, currentSheet string) (refTo string) { for _, definedName := range f.GetDefinedName() { if definedName.Name == definedNameName { refTo = definedName.RefersTo // worksheet scope takes precedence over scope workbook when both definedNames exist if definedName.Scope == currentSheet { break } } } return refTo } // parseToken parse basic arithmetic operator priority and evaluate based on // operators and operands. func (f *File) parseToken(sheet string, token efp.Token, opdStack, optStack *Stack) error { // parse reference: must reference at here if token.TSubType == efp.TokenSubTypeRange { refTo := f.getDefinedNameRefTo(token.TValue, sheet) if refTo != "" { token.TValue = refTo } result, err := f.parseReference(sheet, token.TValue) if err != nil { return errors.New(formulaErrorNAME) } if result.Type != ArgString { return errors.New(formulaErrorVALUE) } token.TValue = result.String token.TType = efp.TokenTypeOperand token.TSubType = efp.TokenSubTypeNumber } if isOperatorPrefixToken(token) { if err := f.parseOperatorPrefixToken(optStack, opdStack, token); err != nil { return err } } if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStart { // ( optStack.Push(token) } if token.TType == efp.TokenTypeSubexpression && token.TSubType == efp.TokenSubTypeStop { // ) for optStack.Peek().(efp.Token).TSubType != efp.TokenSubTypeStart && optStack.Peek().(efp.Token).TType != efp.TokenTypeSubexpression { // != ( topOpt := optStack.Peek().(efp.Token) if err := calculate(opdStack, topOpt); err != nil { return err } optStack.Pop() } optStack.Pop() } // opd if token.TType == efp.TokenTypeOperand && token.TSubType == efp.TokenSubTypeNumber { opdStack.Push(token) } return nil } // parseReference parse reference and extract values by given reference // characters and default sheet name. func (f *File) parseReference(sheet, reference string) (arg formulaArg, err error) { reference = strings.Replace(reference, "$", "", -1) refs, cellRanges, cellRefs := list.New(), list.New(), list.New() for _, ref := range strings.Split(reference, ":") { tokens := strings.Split(ref, "!") cr := cellRef{} if len(tokens) == 2 { // have a worksheet name cr.Sheet = tokens[0] if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[1]); err != nil { return } if refs.Len() > 0 { e := refs.Back() cellRefs.PushBack(e.Value.(cellRef)) refs.Remove(e) } refs.PushBack(cr) continue } if cr.Col, cr.Row, err = CellNameToCoordinates(tokens[0]); err != nil { return } e := refs.Back() if e == nil { cr.Sheet = sheet refs.PushBack(cr) continue } cellRanges.PushBack(cellRange{ From: e.Value.(cellRef), To: cr, }) refs.Remove(e) } if refs.Len() > 0 { e := refs.Back() cellRefs.PushBack(e.Value.(cellRef)) refs.Remove(e) } arg, err = f.rangeResolver(cellRefs, cellRanges) return } // prepareValueRange prepare value range. func prepareValueRange(cr cellRange, valueRange []int) { if cr.From.Row < valueRange[0] || valueRange[0] == 0 { valueRange[0] = cr.From.Row } if cr.From.Col < valueRange[2] || valueRange[2] == 0 { valueRange[2] = cr.From.Col } if cr.To.Row > valueRange[1] || valueRange[1] == 0 { valueRange[1] = cr.To.Row } if cr.To.Col > valueRange[3] || valueRange[3] == 0 { valueRange[3] = cr.To.Col } } // prepareValueRef prepare value reference. func prepareValueRef(cr cellRef, valueRange []int) { if cr.Row < valueRange[0] || valueRange[0] == 0 { valueRange[0] = cr.Row } if cr.Col < valueRange[2] || valueRange[2] == 0 { valueRange[2] = cr.Col } if cr.Row > valueRange[1] || valueRange[1] == 0 { valueRange[1] = cr.Row } if cr.Col > valueRange[3] || valueRange[3] == 0 { valueRange[3] = cr.Col } } // rangeResolver extract value as string from given reference and range list. // This function will not ignore the empty cell. For example, A1:A2:A2:B3 will // be reference A1:B3. func (f *File) rangeResolver(cellRefs, cellRanges *list.List) (arg formulaArg, err error) { // value range order: from row, to row, from column, to column valueRange := []int{0, 0, 0, 0} var sheet string // prepare value range for temp := cellRanges.Front(); temp != nil; temp = temp.Next() { cr := temp.Value.(cellRange) if cr.From.Sheet != cr.To.Sheet { err = errors.New(formulaErrorVALUE) } rng := []int{cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row} sortCoordinates(rng) cr.From.Col, cr.From.Row, cr.To.Col, cr.To.Row = rng[0], rng[1], rng[2], rng[3] prepareValueRange(cr, valueRange) if cr.From.Sheet != "" { sheet = cr.From.Sheet } } for temp := cellRefs.Front(); temp != nil; temp = temp.Next() { cr := temp.Value.(cellRef) if cr.Sheet != "" { sheet = cr.Sheet } prepareValueRef(cr, valueRange) } // extract value from ranges if cellRanges.Len() > 0 { arg.Type = ArgMatrix for row := valueRange[0]; row <= valueRange[1]; row++ { var matrixRow = []formulaArg{} for col := valueRange[2]; col <= valueRange[3]; col++ { var cell, value string if cell, err = CoordinatesToCellName(col, row); err != nil { return } if value, err = f.GetCellValue(sheet, cell); err != nil { return } matrixRow = append(matrixRow, formulaArg{ String: value, Type: ArgString, }) } arg.Matrix = append(arg.Matrix, matrixRow) } return } // extract value from references for temp := cellRefs.Front(); temp != nil; temp = temp.Next() { cr := temp.Value.(cellRef) var cell string if cell, err = CoordinatesToCellName(cr.Col, cr.Row); err != nil { return } if arg.String, err = f.GetCellValue(cr.Sheet, cell); err != nil { return } arg.Type = ArgString } return } // callFuncByName calls the no error or only error return function with // reflect by given receiver, name and parameters. func callFuncByName(receiver interface{}, name string, params []reflect.Value) (arg formulaArg) { function := reflect.ValueOf(receiver).MethodByName(name) if function.IsValid() { rt := function.Call(params) if len(rt) == 0 { return } arg = rt[0].Interface().(formulaArg) return } return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("not support %s function", name)) } // formulaCriteriaParser parse formula criteria. func formulaCriteriaParser(exp string) (fc *formulaCriteria) { fc = &formulaCriteria{} if exp == "" { return } if match := regexp.MustCompile(`^([0-9]+)$`).FindStringSubmatch(exp); len(match) > 1 { fc.Type, fc.Condition = criteriaEq, match[1] return } if match := regexp.MustCompile(`^=(.*)$`).FindStringSubmatch(exp); len(match) > 1 { fc.Type, fc.Condition = criteriaEq, match[1] return } if match := regexp.MustCompile(`^<=(.*)$`).FindStringSubmatch(exp); len(match) > 1 { fc.Type, fc.Condition = criteriaLe, match[1] return } if match := regexp.MustCompile(`^>=(.*)$`).FindStringSubmatch(exp); len(match) > 1 { fc.Type, fc.Condition = criteriaGe, match[1] return } if match := regexp.MustCompile(`^<(.*)$`).FindStringSubmatch(exp); len(match) > 1 { fc.Type, fc.Condition = criteriaL, match[1] return } if match := regexp.MustCompile(`^>(.*)$`).FindStringSubmatch(exp); len(match) > 1 { fc.Type, fc.Condition = criteriaG, match[1] return } if strings.Contains(exp, "*") { if strings.HasPrefix(exp, "*") { fc.Type, fc.Condition = criteriaEnd, strings.TrimPrefix(exp, "*") } if strings.HasSuffix(exp, "*") { fc.Type, fc.Condition = criteriaBeg, strings.TrimSuffix(exp, "*") } return } fc.Type, fc.Condition = criteriaEq, exp return } // formulaCriteriaEval evaluate formula criteria expression. func formulaCriteriaEval(val string, criteria *formulaCriteria) (result bool, err error) { var value, expected float64 var e error var prepareValue = func(val, cond string) (value float64, expected float64, err error) { if value, err = strconv.ParseFloat(val, 64); err != nil { return } if expected, err = strconv.ParseFloat(criteria.Condition, 64); err != nil { return } return } switch criteria.Type { case criteriaEq: return val == criteria.Condition, err case criteriaLe: value, expected, e = prepareValue(val, criteria.Condition) return value <= expected && e == nil, err case criteriaGe: value, expected, e = prepareValue(val, criteria.Condition) return value >= expected && e == nil, err case criteriaL: value, expected, e = prepareValue(val, criteria.Condition) return value < expected && e == nil, err case criteriaG: value, expected, e = prepareValue(val, criteria.Condition) return value > expected && e == nil, err case criteriaBeg: return strings.HasPrefix(val, criteria.Condition), err case criteriaEnd: return strings.HasSuffix(val, criteria.Condition), err } return } // Math and Trigonometric functions // ABS function returns the absolute value of any supplied number. The syntax // of the function is: // // ABS(number) // func (fn *formulaFuncs) ABS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ABS requires 1 numeric argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type == ArgError { return arg } return newNumberFormulaArg(math.Abs(arg.Number)) } // ACOS function calculates the arccosine (i.e. the inverse cosine) of a given // number, and returns an angle, in radians, between 0 and π. The syntax of // the function is: // // ACOS(number) // func (fn *formulaFuncs) ACOS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ACOS requires 1 numeric argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type == ArgError { return arg } return newNumberFormulaArg(math.Acos(arg.Number)) } // ACOSH function calculates the inverse hyperbolic cosine of a supplied number. // of the function is: // // ACOSH(number) // func (fn *formulaFuncs) ACOSH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ACOSH requires 1 numeric argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type == ArgError { return arg } return newNumberFormulaArg(math.Acosh(arg.Number)) } // ACOT function calculates the arccotangent (i.e. the inverse cotangent) of a // given number, and returns an angle, in radians, between 0 and π. The syntax // of the function is: // // ACOT(number) // func (fn *formulaFuncs) ACOT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ACOT requires 1 numeric argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type == ArgError { return arg } return newNumberFormulaArg(math.Pi/2 - math.Atan(arg.Number)) } // ACOTH function calculates the hyperbolic arccotangent (coth) of a supplied // value. The syntax of the function is: // // ACOTH(number) // func (fn *formulaFuncs) ACOTH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ACOTH requires 1 numeric argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type == ArgError { return arg } return newNumberFormulaArg(math.Atanh(1 / arg.Number)) } // ARABIC function converts a Roman numeral into an Arabic numeral. The syntax // of the function is: // // ARABIC(text) // func (fn *formulaFuncs) ARABIC(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ARABIC requires 1 numeric argument") } charMap := map[rune]float64{'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000} val, last, prefix := 0.0, 0.0, 1.0 for _, char := range argsList.Front().Value.(formulaArg).String { digit := 0.0 if char == '-' { prefix = -1 continue } digit, _ = charMap[char] val += digit switch { case last == digit && (last == 5 || last == 50 || last == 500): return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) case 2*last == digit: return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } if last < digit { val -= 2 * last } last = digit } return newNumberFormulaArg(prefix * val) } // ASIN function calculates the arcsine (i.e. the inverse sine) of a given // number, and returns an angle, in radians, between -π/2 and π/2. The syntax // of the function is: // // ASIN(number) // func (fn *formulaFuncs) ASIN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ASIN requires 1 numeric argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type == ArgError { return arg } return newNumberFormulaArg(math.Asin(arg.Number)) } // ASINH function calculates the inverse hyperbolic sine of a supplied number. // The syntax of the function is: // // ASINH(number) // func (fn *formulaFuncs) ASINH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ASINH requires 1 numeric argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type == ArgError { return arg } return newNumberFormulaArg(math.Asinh(arg.Number)) } // ATAN function calculates the arctangent (i.e. the inverse tangent) of a // given number, and returns an angle, in radians, between -π/2 and +π/2. The // syntax of the function is: // // ATAN(number) // func (fn *formulaFuncs) ATAN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ATAN requires 1 numeric argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type == ArgError { return arg } return newNumberFormulaArg(math.Atan(arg.Number)) } // ATANH function calculates the inverse hyperbolic tangent of a supplied // number. The syntax of the function is: // // ATANH(number) // func (fn *formulaFuncs) ATANH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ATANH requires 1 numeric argument") } arg := argsList.Front().Value.(formulaArg).ToNumber() if arg.Type == ArgError { return arg } return newNumberFormulaArg(math.Atanh(arg.Number)) } // ATAN2 function calculates the arctangent (i.e. the inverse tangent) of a // given set of x and y coordinates, and returns an angle, in radians, between // -π/2 and +π/2. The syntax of the function is: // // ATAN2(x_num,y_num) // func (fn *formulaFuncs) ATAN2(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "ATAN2 requires 2 numeric arguments") } x, err := strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } y, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newNumberFormulaArg(math.Atan2(x, y)) } // BASE function converts a number into a supplied base (radix), and returns a // text representation of the calculated value. The syntax of the function is: // // BASE(number,radix,[min_length]) // func (fn *formulaFuncs) BASE(argsList *list.List) formulaArg { if argsList.Len() < 2 { return newErrorFormulaArg(formulaErrorVALUE, "BASE requires at least 2 arguments") } if argsList.Len() > 3 { return newErrorFormulaArg(formulaErrorVALUE, "BASE allows at most 3 arguments") } var number float64 var radix, minLength int var err error if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if radix, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if radix < 2 || radix > 36 { return newErrorFormulaArg(formulaErrorVALUE, "radix must be an integer >= 2 and <= 36") } if argsList.Len() > 2 { if minLength, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } } result := strconv.FormatInt(int64(number), radix) if len(result) < minLength { result = strings.Repeat("0", minLength-len(result)) + result } return newStringFormulaArg(strings.ToUpper(result)) } // CEILING function rounds a supplied number away from zero, to the nearest // multiple of a given number. The syntax of the function is: // // CEILING(number,significance) // func (fn *formulaFuncs) CEILING(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "CEILING requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "CEILING allows at most 2 arguments") } number, significance, res := 0.0, 1.0, 0.0 var err error number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if number < 0 { significance = -1 } if argsList.Len() > 1 { if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } } if significance < 0 && number > 0 { return newErrorFormulaArg(formulaErrorVALUE, "negative sig to CEILING invalid") } if argsList.Len() == 1 { return newNumberFormulaArg(math.Ceil(number)) } number, res = math.Modf(number / significance) if res > 0 { number++ } return newNumberFormulaArg(number * significance) } // CEILINGMATH function rounds a supplied number up to a supplied multiple of // significance. The syntax of the function is: // // CEILING.MATH(number,[significance],[mode]) // func (fn *formulaFuncs) CEILINGMATH(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH requires at least 1 argument") } if argsList.Len() > 3 { return newErrorFormulaArg(formulaErrorVALUE, "CEILING.MATH allows at most 3 arguments") } number, significance, mode := 0.0, 1.0, 1.0 var err error if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if number < 0 { significance = -1 } if argsList.Len() > 1 { if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } } if argsList.Len() == 1 { return newNumberFormulaArg(math.Ceil(number)) } if argsList.Len() > 2 { if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } } val, res := math.Modf(number / significance) if res != 0 { if number > 0 { val++ } else if mode < 0 { val-- } } return newNumberFormulaArg(val * significance) } // CEILINGPRECISE function rounds a supplied number up (regardless of the // number's sign), to the nearest multiple of a given number. The syntax of // the function is: // // CEILING.PRECISE(number,[significance]) // func (fn *formulaFuncs) CEILINGPRECISE(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "CEILING.PRECISE allows at most 2 arguments") } number, significance := 0.0, 1.0 var err error number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if number < 0 { significance = -1 } if argsList.Len() == 1 { return newNumberFormulaArg(math.Ceil(number)) } if argsList.Len() > 1 { if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil { err = errors.New(formulaErrorVALUE) return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } significance = math.Abs(significance) if significance == 0 { return newStringFormulaArg("0") } } val, res := math.Modf(number / significance) if res != 0 { if number > 0 { val++ } } return newNumberFormulaArg(val * significance) } // COMBIN function calculates the number of combinations (in any order) of a // given number objects from a set. The syntax of the function is: // // COMBIN(number,number_chosen) // func (fn *formulaFuncs) COMBIN(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires 2 argument") } number, chosen, val := 0.0, 0.0, 1.0 var err error if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } number, chosen = math.Trunc(number), math.Trunc(chosen) if chosen > number { return newErrorFormulaArg(formulaErrorVALUE, "COMBIN requires number >= number_chosen") } if chosen == number || chosen == 0 { return newStringFormulaArg("1") } for c := float64(1); c <= chosen; c++ { val *= (number + 1 - c) / c } return newNumberFormulaArg(math.Ceil(val)) } // COMBINA function calculates the number of combinations, with repetitions, // of a given number objects from a set. The syntax of the function is: // // COMBINA(number,number_chosen) // func (fn *formulaFuncs) COMBINA(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires 2 argument") } var number, chosen float64 var err error number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } chosen, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } number, chosen = math.Trunc(number), math.Trunc(chosen) if number < chosen { return newErrorFormulaArg(formulaErrorVALUE, "COMBINA requires number > number_chosen") } if number == 0 { return newStringFormulaArg("0") } args := list.New() args.PushBack(formulaArg{ String: fmt.Sprintf("%g", number+chosen-1), Type: ArgString, }) args.PushBack(formulaArg{ String: fmt.Sprintf("%g", number-1), Type: ArgString, }) return fn.COMBIN(args) } // COS function calculates the cosine of a given angle. The syntax of the // function is: // // COS(number) // func (fn *formulaFuncs) COS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "COS requires 1 numeric argument") } val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newNumberFormulaArg(math.Cos(val)) } // COSH function calculates the hyperbolic cosine (cosh) of a supplied number. // The syntax of the function is: // // COSH(number) // func (fn *formulaFuncs) COSH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "COSH requires 1 numeric argument") } val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newNumberFormulaArg(math.Cosh(val)) } // COT function calculates the cotangent of a given angle. The syntax of the // function is: // // COT(number) // func (fn *formulaFuncs) COT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "COT requires 1 numeric argument") } val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if val == 0 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } return newNumberFormulaArg(math.Tan(val)) } // COTH function calculates the hyperbolic cotangent (coth) of a supplied // angle. The syntax of the function is: // // COTH(number) // func (fn *formulaFuncs) COTH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "COTH requires 1 numeric argument") } val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if val == 0 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } return newNumberFormulaArg(math.Tanh(val)) } // CSC function calculates the cosecant of a given angle. The syntax of the // function is: // // CSC(number) // func (fn *formulaFuncs) CSC(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "CSC requires 1 numeric argument") } val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if val == 0 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } return newNumberFormulaArg(1 / math.Sin(val)) } // CSCH function calculates the hyperbolic cosecant (csch) of a supplied // angle. The syntax of the function is: // // CSCH(number) // func (fn *formulaFuncs) CSCH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "CSCH requires 1 numeric argument") } val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if val == 0 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } return newNumberFormulaArg(1 / math.Sinh(val)) } // DECIMAL function converts a text representation of a number in a specified // base, into a decimal value. The syntax of the function is: // // DECIMAL(text,radix) // func (fn *formulaFuncs) DECIMAL(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "DECIMAL requires 2 numeric arguments") } var text = argsList.Front().Value.(formulaArg).String var radix int var err error radix, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if len(text) > 2 && (strings.HasPrefix(text, "0x") || strings.HasPrefix(text, "0X")) { text = text[2:] } val, err := strconv.ParseInt(text, radix, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newNumberFormulaArg(float64(val)) } // DEGREES function converts radians into degrees. The syntax of the function // is: // // DEGREES(angle) // func (fn *formulaFuncs) DEGREES(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "DEGREES requires 1 numeric argument") } val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if val == 0 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } return newNumberFormulaArg(180.0 / math.Pi * val) } // EVEN function rounds a supplied number away from zero (i.e. rounds a // positive number up and a negative number down), to the next even number. // The syntax of the function is: // // EVEN(number) // func (fn *formulaFuncs) EVEN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "EVEN requires 1 numeric argument") } number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } sign := math.Signbit(number) m, frac := math.Modf(number / 2) val := m * 2 if frac != 0 { if !sign { val += 2 } else { val -= 2 } } return newNumberFormulaArg(val) } // EXP function calculates the value of the mathematical constant e, raised to // the power of a given number. The syntax of the function is: // // EXP(number) // func (fn *formulaFuncs) EXP(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "EXP requires 1 numeric argument") } number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", math.Exp(number)))) } // fact returns the factorial of a supplied number. func fact(number float64) float64 { val := float64(1) for i := float64(2); i <= number; i++ { val *= i } return val } // FACT function returns the factorial of a supplied number. The syntax of the // function is: // // FACT(number) // func (fn *formulaFuncs) FACT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "FACT requires 1 numeric argument") } number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if number < 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", fact(number)))) } // FACTDOUBLE function returns the double factorial of a supplied number. The // syntax of the function is: // // FACTDOUBLE(number) // func (fn *formulaFuncs) FACTDOUBLE(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "FACTDOUBLE requires 1 numeric argument") } val := 1.0 number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if number < 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } for i := math.Trunc(number); i > 1; i -= 2 { val *= i } return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val))) } // FLOOR function rounds a supplied number towards zero to the nearest // multiple of a specified significance. The syntax of the function is: // // FLOOR(number,significance) // func (fn *formulaFuncs) FLOOR(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "FLOOR requires 2 numeric arguments") } var number, significance float64 var err error number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if significance < 0 && number >= 0 { return newErrorFormulaArg(formulaErrorNUM, "invalid arguments to FLOOR") } val := number val, res := math.Modf(val / significance) if res != 0 { if number < 0 && res < 0 { val-- } } return newStringFormulaArg(strings.ToUpper(fmt.Sprintf("%g", val*significance))) } // FLOORMATH function rounds a supplied number down to a supplied multiple of // significance. The syntax of the function is: // // FLOOR.MATH(number,[significance],[mode]) // func (fn *formulaFuncs) FLOORMATH(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH requires at least 1 argument") } if argsList.Len() > 3 { return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.MATH allows at most 3 arguments") } number, significance, mode := 0.0, 1.0, 1.0 var err error number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if number < 0 { significance = -1 } if argsList.Len() > 1 { if significance, err = strconv.ParseFloat(argsList.Front().Next().Value.(formulaArg).String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } } if argsList.Len() == 1 { return newNumberFormulaArg(math.Floor(number)) } if argsList.Len() > 2 { if mode, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } } val, res := math.Modf(number / significance) if res != 0 && number < 0 && mode > 0 { val-- } return newNumberFormulaArg(val * significance) } // FLOORPRECISE function rounds a supplied number down to a supplied multiple // of significance. The syntax of the function is: // // FLOOR.PRECISE(number,[significance]) // func (fn *formulaFuncs) FLOORPRECISE(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "FLOOR.PRECISE allows at most 2 arguments") } var number, significance float64 var err error number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if number < 0 { significance = -1 } if argsList.Len() == 1 { return newNumberFormulaArg(math.Floor(number)) } if argsList.Len() > 1 { if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } significance = math.Abs(significance) if significance == 0 { return newStringFormulaArg("0") } } val, res := math.Modf(number / significance) if res != 0 { if number < 0 { val-- } } return newNumberFormulaArg(val * significance) } // gcd returns the greatest common divisor of two supplied integers. func gcd(x, y float64) float64 { x, y = math.Trunc(x), math.Trunc(y) if x == 0 { return y } if y == 0 { return x } for x != y { if x > y { x = x - y } else { y = y - x } } return x } // GCD function returns the greatest common divisor of two or more supplied // integers. The syntax of the function is: // // GCD(number1,[number2],...) // func (fn *formulaFuncs) GCD(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "GCD requires at least 1 argument") } var ( val float64 nums = []float64{} err error ) for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg).String if token == "" { continue } if val, err = strconv.ParseFloat(token, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } nums = append(nums, val) } if nums[0] < 0 { return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments") } if len(nums) == 1 { return newNumberFormulaArg(nums[0]) } cd := nums[0] for i := 1; i < len(nums); i++ { if nums[i] < 0 { return newErrorFormulaArg(formulaErrorVALUE, "GCD only accepts positive arguments") } cd = gcd(cd, nums[i]) } return newNumberFormulaArg(cd) } // INT function truncates a supplied number down to the closest integer. The // syntax of the function is: // // INT(number) // func (fn *formulaFuncs) INT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "INT requires 1 numeric argument") } number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } val, frac := math.Modf(number) if frac < 0 { val-- } return newNumberFormulaArg(val) } // ISOCEILING function rounds a supplied number up (regardless of the number's // sign), to the nearest multiple of a supplied significance. The syntax of // the function is: // // ISO.CEILING(number,[significance]) // func (fn *formulaFuncs) ISOCEILING(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "ISO.CEILING allows at most 2 arguments") } var number, significance float64 var err error if number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if number < 0 { significance = -1 } if argsList.Len() == 1 { return newNumberFormulaArg(math.Ceil(number)) } if argsList.Len() > 1 { if significance, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } significance = math.Abs(significance) if significance == 0 { return newStringFormulaArg("0") } } val, res := math.Modf(number / significance) if res != 0 { if number > 0 { val++ } } return newNumberFormulaArg(val * significance) } // lcm returns the least common multiple of two supplied integers. func lcm(a, b float64) float64 { a = math.Trunc(a) b = math.Trunc(b) if a == 0 && b == 0 { return 0 } return a * b / gcd(a, b) } // LCM function returns the least common multiple of two or more supplied // integers. The syntax of the function is: // // LCM(number1,[number2],...) // func (fn *formulaFuncs) LCM(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "LCM requires at least 1 argument") } var ( val float64 nums = []float64{} err error ) for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg).String if token == "" { continue } if val, err = strconv.ParseFloat(token, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } nums = append(nums, val) } if nums[0] < 0 { return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments") } if len(nums) == 1 { return newNumberFormulaArg(nums[0]) } cm := nums[0] for i := 1; i < len(nums); i++ { if nums[i] < 0 { return newErrorFormulaArg(formulaErrorVALUE, "LCM only accepts positive arguments") } cm = lcm(cm, nums[i]) } return newNumberFormulaArg(cm) } // LN function calculates the natural logarithm of a given number. The syntax // of the function is: // // LN(number) // func (fn *formulaFuncs) LN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "LN requires 1 numeric argument") } number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newNumberFormulaArg(math.Log(number)) } // LOG function calculates the logarithm of a given number, to a supplied // base. The syntax of the function is: // // LOG(number,[base]) // func (fn *formulaFuncs) LOG(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "LOG requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "LOG allows at most 2 arguments") } number, base := 0.0, 10.0 var err error number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if argsList.Len() > 1 { if base, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } } if number == 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV) } if base == 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorDIV) } if base == 1 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } return newNumberFormulaArg(math.Log(number) / math.Log(base)) } // LOG10 function calculates the base 10 logarithm of a given number. The // syntax of the function is: // // LOG10(number) // func (fn *formulaFuncs) LOG10(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "LOG10 requires 1 numeric argument") } number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newNumberFormulaArg(math.Log10(number)) } // minor function implement a minor of a matrix A is the determinant of some // smaller square matrix. func minor(sqMtx [][]float64, idx int) [][]float64 { ret := [][]float64{} for i := range sqMtx { if i == 0 { continue } row := []float64{} for j := range sqMtx { if j == idx { continue } row = append(row, sqMtx[i][j]) } ret = append(ret, row) } return ret } // det determinant of the 2x2 matrix. func det(sqMtx [][]float64) float64 { if len(sqMtx) == 2 { m00 := sqMtx[0][0] m01 := sqMtx[0][1] m10 := sqMtx[1][0] m11 := sqMtx[1][1] return m00*m11 - m10*m01 } var res, sgn float64 = 0, 1 for j := range sqMtx { res += sgn * sqMtx[0][j] * det(minor(sqMtx, j)) sgn *= -1 } return res } // MDETERM calculates the determinant of a square matrix. The // syntax of the function is: // // MDETERM(array) // func (fn *formulaFuncs) MDETERM(argsList *list.List) (result formulaArg) { var ( num float64 numMtx = [][]float64{} err error strMtx = argsList.Front().Value.(formulaArg).Matrix ) if argsList.Len() < 1 { return } var rows = len(strMtx) for _, row := range argsList.Front().Value.(formulaArg).Matrix { if len(row) != rows { return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } numRow := []float64{} for _, ele := range row { if num, err = strconv.ParseFloat(ele.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } numRow = append(numRow, num) } numMtx = append(numMtx, numRow) } return newNumberFormulaArg(det(numMtx)) } // MOD function returns the remainder of a division between two supplied // numbers. The syntax of the function is: // // MOD(number,divisor) // func (fn *formulaFuncs) MOD(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "MOD requires 2 numeric arguments") } var number, divisor float64 var err error number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } divisor, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if divisor == 0 { return newErrorFormulaArg(formulaErrorDIV, "MOD divide by zero") } trunc, rem := math.Modf(number / divisor) if rem < 0 { trunc-- } return newNumberFormulaArg(number - divisor*trunc) } // MROUND function rounds a supplied number up or down to the nearest multiple // of a given number. The syntax of the function is: // // MROUND(number,multiple) // func (fn *formulaFuncs) MROUND(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "MROUND requires 2 numeric arguments") } var number, multiple float64 var err error number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } multiple, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if multiple == 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } if multiple < 0 && number > 0 || multiple > 0 && number < 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } number, res := math.Modf(number / multiple) if math.Trunc(res+0.5) > 0 { number++ } return newNumberFormulaArg(number * multiple) } // MULTINOMIAL function calculates the ratio of the factorial of a sum of // supplied values to the product of factorials of those values. The syntax of // the function is: // // MULTINOMIAL(number1,[number2],...) // func (fn *formulaFuncs) MULTINOMIAL(argsList *list.List) formulaArg { val, num, denom := 0.0, 0.0, 1.0 var err error for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) if token.String == "" { continue } if val, err = strconv.ParseFloat(token.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } num += val denom *= fact(val) } return newNumberFormulaArg(fact(num) / denom) } // MUNIT function returns the unit matrix for a specified dimension. The // syntax of the function is: // // MUNIT(dimension) // func (fn *formulaFuncs) MUNIT(argsList *list.List) (result formulaArg) { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "MUNIT requires 1 numeric argument") } dimension, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } matrix := make([][]formulaArg, 0, dimension) for i := 0; i < dimension; i++ { row := make([]formulaArg, dimension) for j := 0; j < dimension; j++ { if i == j { row[j] = newNumberFormulaArg(float64(1.0)) } else { row[j] = newNumberFormulaArg(float64(0.0)) } } matrix = append(matrix, row) } return newMatrixFormulaArg(matrix) } // ODD function ounds a supplied number away from zero (i.e. rounds a positive // number up and a negative number down), to the next odd number. The syntax // of the function is: // // ODD(number) // func (fn *formulaFuncs) ODD(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ODD requires 1 numeric argument") } number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if number == 0 { return newStringFormulaArg("1") } sign := math.Signbit(number) m, frac := math.Modf((number - 1) / 2) val := m*2 + 1 if frac != 0 { if !sign { val += 2 } else { val -= 2 } } return newNumberFormulaArg(val) } // PI function returns the value of the mathematical constant π (pi), accurate // to 15 digits (14 decimal places). The syntax of the function is: // // PI() // func (fn *formulaFuncs) PI(argsList *list.List) formulaArg { if argsList.Len() != 0 { return newErrorFormulaArg(formulaErrorVALUE, "PI accepts no arguments") } return newNumberFormulaArg(math.Pi) } // POWER function calculates a given number, raised to a supplied power. // The syntax of the function is: // // POWER(number,power) // func (fn *formulaFuncs) POWER(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "POWER requires 2 numeric arguments") } var x, y float64 var err error x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if x == 0 && y == 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } if x == 0 && y < 0 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } return newNumberFormulaArg(math.Pow(x, y)) } // PRODUCT function returns the product (multiplication) of a supplied set of // numerical values. The syntax of the function is: // // PRODUCT(number1,[number2],...) // func (fn *formulaFuncs) PRODUCT(argsList *list.List) formulaArg { val, product := 0.0, 1.0 var err error for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) switch token.Type { case ArgUnknown: continue case ArgString: if token.String == "" { continue } if val, err = strconv.ParseFloat(token.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } product = product * val case ArgMatrix: for _, row := range token.Matrix { for _, value := range row { if value.String == "" { continue } if val, err = strconv.ParseFloat(value.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } product = product * val } } } } return newNumberFormulaArg(product) } // QUOTIENT function returns the integer portion of a division between two // supplied numbers. The syntax of the function is: // // QUOTIENT(numerator,denominator) // func (fn *formulaFuncs) QUOTIENT(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "QUOTIENT requires 2 numeric arguments") } var x, y float64 var err error x, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } y, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if y == 0 { return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } return newNumberFormulaArg(math.Trunc(x / y)) } // RADIANS function converts radians into degrees. The syntax of the function is: // // RADIANS(angle) // func (fn *formulaFuncs) RADIANS(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "RADIANS requires 1 numeric argument") } angle, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newNumberFormulaArg(math.Pi / 180.0 * angle) } // RAND function generates a random real number between 0 and 1. The syntax of // the function is: // // RAND() // func (fn *formulaFuncs) RAND(argsList *list.List) formulaArg { if argsList.Len() != 0 { return newErrorFormulaArg(formulaErrorVALUE, "RAND accepts no arguments") } return newNumberFormulaArg(rand.New(rand.NewSource(time.Now().UnixNano())).Float64()) } // RANDBETWEEN function generates a random integer between two supplied // integers. The syntax of the function is: // // RANDBETWEEN(bottom,top) // func (fn *formulaFuncs) RANDBETWEEN(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "RANDBETWEEN requires 2 numeric arguments") } var bottom, top int64 var err error bottom, err = strconv.ParseInt(argsList.Front().Value.(formulaArg).String, 10, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } top, err = strconv.ParseInt(argsList.Back().Value.(formulaArg).String, 10, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if top < bottom { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } return newNumberFormulaArg(float64(rand.New(rand.NewSource(time.Now().UnixNano())).Int63n(top-bottom+1) + bottom)) } // romanNumerals defined a numeral system that originated in ancient Rome and // remained the usual way of writing numbers throughout Europe well into the // Late Middle Ages. type romanNumerals struct { n float64 s string } var romanTable = [][]romanNumerals{{{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}, {{1000, "M"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {95, "VC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}, {{1000, "M"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}, {{1000, "M"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}, {{1000, "M"}, {999, "IM"}, {995, "VM"}, {990, "XM"}, {950, "LM"}, {900, "CM"}, {500, "D"}, {499, "ID"}, {495, "VD"}, {490, "XD"}, {450, "LD"}, {400, "CD"}, {100, "C"}, {99, "IC"}, {90, "XC"}, {50, "L"}, {45, "VL"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"}}} // ROMAN function converts an arabic number to Roman. I.e. for a supplied // integer, the function returns a text string depicting the roman numeral // form of the number. The syntax of the function is: // // ROMAN(number,[form]) // func (fn *formulaFuncs) ROMAN(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "ROMAN requires at least 1 argument") } if argsList.Len() > 2 { return newErrorFormulaArg(formulaErrorVALUE, "ROMAN allows at most 2 arguments") } var number float64 var form int var err error number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if argsList.Len() > 1 { if form, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if form < 0 { form = 0 } else if form > 4 { form = 4 } } decimalTable := romanTable[0] switch form { case 1: decimalTable = romanTable[1] case 2: decimalTable = romanTable[2] case 3: decimalTable = romanTable[3] case 4: decimalTable = romanTable[4] } val := math.Trunc(number) buf := bytes.Buffer{} for _, r := range decimalTable { for val >= r.n { buf.WriteString(r.s) val -= r.n } } return newStringFormulaArg(buf.String()) } type roundMode byte const ( closest roundMode = iota down up ) // round rounds a supplied number up or down. func (fn *formulaFuncs) round(number, digits float64, mode roundMode) float64 { var significance float64 if digits > 0 { significance = math.Pow(1/10.0, digits) } else { significance = math.Pow(10.0, -digits) } val, res := math.Modf(number / significance) switch mode { case closest: const eps = 0.499999999 if res >= eps { val++ } else if res <= -eps { val-- } case down: case up: if res > 0 { val++ } else if res < 0 { val-- } } return val * significance } // ROUND function rounds a supplied number up or down, to a specified number // of decimal places. The syntax of the function is: // // ROUND(number,num_digits) // func (fn *formulaFuncs) ROUND(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "ROUND requires 2 numeric arguments") } var number, digits float64 var err error number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newNumberFormulaArg(fn.round(number, digits, closest)) } // ROUNDDOWN function rounds a supplied number down towards zero, to a // specified number of decimal places. The syntax of the function is: // // ROUNDDOWN(number,num_digits) // func (fn *formulaFuncs) ROUNDDOWN(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "ROUNDDOWN requires 2 numeric arguments") } var number, digits float64 var err error number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newNumberFormulaArg(fn.round(number, digits, down)) } // ROUNDUP function rounds a supplied number up, away from zero, to a // specified number of decimal places. The syntax of the function is: // // ROUNDUP(number,num_digits) // func (fn *formulaFuncs) ROUNDUP(argsList *list.List) formulaArg { if argsList.Len() != 2 { return newErrorFormulaArg(formulaErrorVALUE, "ROUNDUP requires 2 numeric arguments") } var number, digits float64 var err error number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newNumberFormulaArg(fn.round(number, digits, up)) } // SEC function calculates the secant of a given angle. The syntax of the // function is: // // SEC(number) // func (fn *formulaFuncs) SEC(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "SEC requires 1 numeric argument") } number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newNumberFormulaArg(math.Cos(number)) } // SECH function calculates the hyperbolic secant (sech) of a supplied angle. // The syntax of the function is: // // SECH(number) // func (fn *formulaFuncs) SECH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "SECH requires 1 numeric argument") } number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newNumberFormulaArg(1 / math.Cosh(number)) } // SIGN function returns the arithmetic sign (+1, -1 or 0) of a supplied // number. I.e. if the number is positive, the Sign function returns +1, if // the number is negative, the function returns -1 and if the number is 0 // (zero), the function returns 0. The syntax of the function is: // // SIGN(number) // func (fn *formulaFuncs) SIGN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "SIGN requires 1 numeric argument") } val, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if val < 0 { return newStringFormulaArg("-1") } if val > 0 { return newStringFormulaArg("1") } return newStringFormulaArg("0") } // SIN function calculates the sine of a given angle. The syntax of the // function is: // // SIN(number) // func (fn *formulaFuncs) SIN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "SIN requires 1 numeric argument") } number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newNumberFormulaArg(math.Sin(number)) } // SINH function calculates the hyperbolic sine (sinh) of a supplied number. // The syntax of the function is: // // SINH(number) // func (fn *formulaFuncs) SINH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "SINH requires 1 numeric argument") } number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newNumberFormulaArg(math.Sinh(number)) } // SQRT function calculates the positive square root of a supplied number. The // syntax of the function is: // // SQRT(number) // func (fn *formulaFuncs) SQRT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "SQRT requires 1 numeric argument") } var res float64 var value = argsList.Front().Value.(formulaArg).String if value == "" { return newStringFormulaArg("0") } res, err := strconv.ParseFloat(value, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if res < 0 { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } return newNumberFormulaArg(math.Sqrt(res)) } // SQRTPI function returns the square root of a supplied number multiplied by // the mathematical constant, π. The syntax of the function is: // // SQRTPI(number) // func (fn *formulaFuncs) SQRTPI(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "SQRTPI requires 1 numeric argument") } number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newNumberFormulaArg(math.Sqrt(number * math.Pi)) } // SUM function adds together a supplied set of numbers and returns the sum of // these values. The syntax of the function is: // // SUM(number1,[number2],...) // func (fn *formulaFuncs) SUM(argsList *list.List) formulaArg { var ( val, sum float64 err error ) for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) switch token.Type { case ArgUnknown: continue case ArgString: if token.String == "" { continue } if val, err = strconv.ParseFloat(token.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } sum += val case ArgNumber: sum += token.Number case ArgMatrix: for _, row := range token.Matrix { for _, value := range row { if value.String == "" { continue } if val, err = strconv.ParseFloat(value.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } sum += val } } } } return newNumberFormulaArg(sum) } // SUMIF function finds the values in a supplied array, that satisfy a given // criteria, and returns the sum of the corresponding values in a second // supplied array. The syntax of the function is: // // SUMIF(range,criteria,[sum_range]) // func (fn *formulaFuncs) SUMIF(argsList *list.List) formulaArg { if argsList.Len() < 2 { return newErrorFormulaArg(formulaErrorVALUE, "SUMIF requires at least 2 argument") } var criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String) var rangeMtx = argsList.Front().Value.(formulaArg).Matrix var sumRange [][]formulaArg if argsList.Len() == 3 { sumRange = argsList.Back().Value.(formulaArg).Matrix } var sum, val float64 var err error for rowIdx, row := range rangeMtx { for colIdx, col := range row { var ok bool fromVal := col.String if col.String == "" { continue } if ok, err = formulaCriteriaEval(fromVal, criteria); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if ok { if argsList.Len() == 3 { if len(sumRange) <= rowIdx || len(sumRange[rowIdx]) <= colIdx { continue } fromVal = sumRange[rowIdx][colIdx].String } if val, err = strconv.ParseFloat(fromVal, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } sum += val } } } return newNumberFormulaArg(sum) } // SUMSQ function returns the sum of squares of a supplied set of values. The // syntax of the function is: // // SUMSQ(number1,[number2],...) // func (fn *formulaFuncs) SUMSQ(argsList *list.List) formulaArg { var val, sq float64 var err error for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) switch token.Type { case ArgString: if token.String == "" { continue } if val, err = strconv.ParseFloat(token.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } sq += val * val case ArgMatrix: for _, row := range token.Matrix { for _, value := range row { if value.String == "" { continue } if val, err = strconv.ParseFloat(value.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } sq += val * val } } } } return newNumberFormulaArg(sq) } // TAN function calculates the tangent of a given angle. The syntax of the // function is: // // TAN(number) // func (fn *formulaFuncs) TAN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "TAN requires 1 numeric argument") } number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newNumberFormulaArg(math.Tan(number)) } // TANH function calculates the hyperbolic tangent (tanh) of a supplied // number. The syntax of the function is: // // TANH(number) // func (fn *formulaFuncs) TANH(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "TANH requires 1 numeric argument") } number, err := strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } return newNumberFormulaArg(math.Tanh(number)) } // TRUNC function truncates a supplied number to a specified number of decimal // places. The syntax of the function is: // // TRUNC(number,[number_digits]) // func (fn *formulaFuncs) TRUNC(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "TRUNC requires at least 1 argument") } var number, digits, adjust, rtrim float64 var err error number, err = strconv.ParseFloat(argsList.Front().Value.(formulaArg).String, 64) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if argsList.Len() > 1 { if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } digits = math.Floor(digits) } adjust = math.Pow(10, digits) x := int((math.Abs(number) - math.Abs(float64(int(number)))) * adjust) if x != 0 { if rtrim, err = strconv.ParseFloat(strings.TrimRight(strconv.Itoa(x), "0"), 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } } if (digits > 0) && (rtrim < adjust/10) { return newNumberFormulaArg(number) } return newNumberFormulaArg(float64(int(number*adjust)) / adjust) } // Statistical functions // COUNTA function returns the number of non-blanks within a supplied set of // cells or values. The syntax of the function is: // // COUNTA(value1,[value2],...) // func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg { var count int for token := argsList.Front(); token != nil; token = token.Next() { arg := token.Value.(formulaArg) switch arg.Type { case ArgString: if arg.String != "" { count++ } case ArgMatrix: for _, row := range arg.Matrix { for _, value := range row { if value.String != "" { count++ } } } } } return newStringFormulaArg(fmt.Sprintf("%d", count)) } // MEDIAN function returns the statistical median (the middle value) of a list // of supplied numbers. The syntax of the function is: // // MEDIAN(number1,[number2],...) // func (fn *formulaFuncs) MEDIAN(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "MEDIAN requires at least 1 argument") } var values = []float64{} var median, digits float64 var err error for token := argsList.Front(); token != nil; token = token.Next() { arg := token.Value.(formulaArg) switch arg.Type { case ArgString: if digits, err = strconv.ParseFloat(argsList.Back().Value.(formulaArg).String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } values = append(values, digits) case ArgMatrix: for _, row := range arg.Matrix { for _, value := range row { if value.String == "" { continue } if digits, err = strconv.ParseFloat(value.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } values = append(values, digits) } } } } sort.Float64s(values) if len(values)%2 == 0 { median = (values[len(values)/2-1] + values[len(values)/2]) / 2 } else { median = values[len(values)/2] } return newNumberFormulaArg(median) } // Information functions // ISBLANK function tests if a specified cell is blank (empty) and if so, // returns TRUE; Otherwise the function returns FALSE. The syntax of the // function is: // // ISBLANK(value) // func (fn *formulaFuncs) ISBLANK(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ISBLANK requires 1 argument") } token := argsList.Front().Value.(formulaArg) result := "FALSE" switch token.Type { case ArgUnknown: result = "TRUE" case ArgString: if token.String == "" { result = "TRUE" } } return newStringFormulaArg(result) } // ISERR function tests if an initial supplied expression (or value) returns // any Excel Error, except the #N/A error. If so, the function returns the // logical value TRUE; If the supplied value is not an error or is the #N/A // error, the ISERR function returns FALSE. The syntax of the function is: // // ISERR(value) // func (fn *formulaFuncs) ISERR(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ISERR requires 1 argument") } token := argsList.Front().Value.(formulaArg) result := "FALSE" if token.Type == ArgString { for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} { if errType == token.String { result = "TRUE" } } } return newStringFormulaArg(result) } // ISERROR function tests if an initial supplied expression (or value) returns // an Excel Error, and if so, returns the logical value TRUE; Otherwise the // function returns FALSE. The syntax of the function is: // // ISERROR(value) // func (fn *formulaFuncs) ISERROR(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ISERROR requires 1 argument") } token := argsList.Front().Value.(formulaArg) result := "FALSE" if token.Type == ArgString { for _, errType := range []string{formulaErrorDIV, formulaErrorNAME, formulaErrorNA, formulaErrorNUM, formulaErrorVALUE, formulaErrorREF, formulaErrorNULL, formulaErrorSPILL, formulaErrorCALC, formulaErrorGETTINGDATA} { if errType == token.String { result = "TRUE" } } } return newStringFormulaArg(result) } // ISEVEN function tests if a supplied number (or numeric expression) // evaluates to an even number, and if so, returns TRUE; Otherwise, the // function returns FALSE. The syntax of the function is: // // ISEVEN(value) // func (fn *formulaFuncs) ISEVEN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ISEVEN requires 1 argument") } var ( token = argsList.Front().Value.(formulaArg) result = "FALSE" numeric int err error ) if token.Type == ArgString { if numeric, err = strconv.Atoi(token.String); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if numeric == numeric/2*2 { return newStringFormulaArg("TRUE") } } return newStringFormulaArg(result) } // ISNA function tests if an initial supplied expression (or value) returns // the Excel #N/A Error, and if so, returns TRUE; Otherwise the function // returns FALSE. The syntax of the function is: // // ISNA(value) // func (fn *formulaFuncs) ISNA(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ISNA requires 1 argument") } token := argsList.Front().Value.(formulaArg) result := "FALSE" if token.Type == ArgString && token.String == formulaErrorNA { result = "TRUE" } return newStringFormulaArg(result) } // ISNONTEXT function function tests if a supplied value is text. If not, the // function returns TRUE; If the supplied value is text, the function returns // FALSE. The syntax of the function is: // // ISNONTEXT(value) // func (fn *formulaFuncs) ISNONTEXT(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ISNONTEXT requires 1 argument") } token := argsList.Front().Value.(formulaArg) result := "TRUE" if token.Type == ArgString && token.String != "" { result = "FALSE" } return newStringFormulaArg(result) } // ISNUMBER function function tests if a supplied value is a number. If so, // the function returns TRUE; Otherwise it returns FALSE. The syntax of the // function is: // // ISNUMBER(value) // func (fn *formulaFuncs) ISNUMBER(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ISNUMBER requires 1 argument") } token := argsList.Front().Value.(formulaArg) result := "FALSE" if token.Type == ArgString && token.String != "" { if _, err := strconv.Atoi(token.String); err == nil { result = "TRUE" } } return newStringFormulaArg(result) } // ISODD function tests if a supplied number (or numeric expression) evaluates // to an odd number, and if so, returns TRUE; Otherwise, the function returns // FALSE. The syntax of the function is: // // ISODD(value) // func (fn *formulaFuncs) ISODD(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "ISODD requires 1 argument") } var ( token = argsList.Front().Value.(formulaArg) result = "FALSE" numeric int err error ) if token.Type == ArgString { if numeric, err = strconv.Atoi(token.String); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if numeric != numeric/2*2 { return newStringFormulaArg("TRUE") } } return newStringFormulaArg(result) } // NA function returns the Excel #N/A error. This error message has the // meaning 'value not available' and is produced when an Excel Formula is // unable to find a value that it needs. The syntax of the function is: // // NA() // func (fn *formulaFuncs) NA(argsList *list.List) formulaArg { if argsList.Len() != 0 { return newErrorFormulaArg(formulaErrorVALUE, "NA accepts no arguments") } return newStringFormulaArg(formulaErrorNA) } // Logical Functions // AND function tests a number of supplied conditions and returns TRUE or // FALSE. The syntax of the function is: // // AND(logical_test1,[logical_test2],...) // func (fn *formulaFuncs) AND(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "AND requires at least 1 argument") } if argsList.Len() > 30 { return newErrorFormulaArg(formulaErrorVALUE, "AND accepts at most 30 arguments") } var ( and = true val float64 err error ) for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) switch token.Type { case ArgUnknown: continue case ArgString: if token.String == "TRUE" { continue } if token.String == "FALSE" { return newStringFormulaArg(token.String) } if val, err = strconv.ParseFloat(token.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } and = and && (val != 0) case ArgMatrix: // TODO return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } } return newBoolFormulaArg(and) } // OR function tests a number of supplied conditions and returns either TRUE // or FALSE. The syntax of the function is: // // OR(logical_test1,[logical_test2],...) // func (fn *formulaFuncs) OR(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "OR requires at least 1 argument") } if argsList.Len() > 30 { return newErrorFormulaArg(formulaErrorVALUE, "OR accepts at most 30 arguments") } var ( or bool val float64 err error ) for arg := argsList.Front(); arg != nil; arg = arg.Next() { token := arg.Value.(formulaArg) switch token.Type { case ArgUnknown: continue case ArgString: if token.String == "FALSE" { continue } if token.String == "TRUE" { or = true continue } if val, err = strconv.ParseFloat(token.String, 64); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } or = val != 0 case ArgMatrix: // TODO return newErrorFormulaArg(formulaErrorVALUE, formulaErrorVALUE) } } return newStringFormulaArg(strings.ToUpper(strconv.FormatBool(or))) } // Date and Time Functions // DATE returns a date, from a user-supplied year, month and day. The syntax // of the function is: // // DATE(year,month,day) // func (fn *formulaFuncs) DATE(argsList *list.List) formulaArg { if argsList.Len() != 3 { return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments") } var year, month, day int var err error if year, err = strconv.Atoi(argsList.Front().Value.(formulaArg).String); err != nil { return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments") } if month, err = strconv.Atoi(argsList.Front().Next().Value.(formulaArg).String); err != nil { return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments") } if day, err = strconv.Atoi(argsList.Back().Value.(formulaArg).String); err != nil { return newErrorFormulaArg(formulaErrorVALUE, "DATE requires 3 number arguments") } d := makeDate(year, time.Month(month), day) return newStringFormulaArg(timeFromExcelTime(daysBetween(excelMinTime1900.Unix(), d)+1, false).String()) } // makeDate return date as a Unix time, the number of seconds elapsed since // January 1, 1970 UTC. func makeDate(y int, m time.Month, d int) int64 { if y == 1900 && int(m) <= 2 { d-- } date := time.Date(y, m, d, 0, 0, 0, 0, time.UTC) return date.Unix() } // daysBetween return time interval of the given start timestamp and end // timestamp. func daysBetween(startDate, endDate int64) float64 { return float64(int(0.5 + float64((endDate-startDate)/86400))) } // Text Functions // CLEAN removes all non-printable characters from a supplied text string. The // syntax of the function is: // // CLEAN(text) // func (fn *formulaFuncs) CLEAN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "CLEAN requires 1 argument") } b := bytes.Buffer{} for _, c := range argsList.Front().Value.(formulaArg).String { if c > 31 { b.WriteRune(c) } } return newStringFormulaArg(b.String()) } // LEN returns the length of a supplied text string. The syntax of the // function is: // // LEN(text) // func (fn *formulaFuncs) LEN(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "LEN requires 1 string argument") } return newStringFormulaArg(strconv.Itoa(len(argsList.Front().Value.(formulaArg).String))) } // TRIM removes extra spaces (i.e. all spaces except for single spaces between // words or characters) from a supplied text string. The syntax of the // function is: // // TRIM(text) // func (fn *formulaFuncs) TRIM(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "TRIM requires 1 argument") } return newStringFormulaArg(strings.TrimSpace(argsList.Front().Value.(formulaArg).String)) } // LOWER converts all characters in a supplied text string to lower case. The // syntax of the function is: // // LOWER(text) // func (fn *formulaFuncs) LOWER(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "LOWER requires 1 argument") } return newStringFormulaArg(strings.ToLower(argsList.Front().Value.(formulaArg).String)) } // PROPER converts all characters in a supplied text string to proper case // (i.e. all letters that do not immediately follow another letter are set to // upper case and all other characters are lower case). The syntax of the // function is: // // PROPER(text) // func (fn *formulaFuncs) PROPER(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "PROPER requires 1 argument") } buf := bytes.Buffer{} isLetter := false for _, char := range argsList.Front().Value.(formulaArg).String { if !isLetter && unicode.IsLetter(char) { buf.WriteRune(unicode.ToUpper(char)) } else { buf.WriteRune(unicode.ToLower(char)) } isLetter = unicode.IsLetter(char) } return newStringFormulaArg(buf.String()) } // UPPER converts all characters in a supplied text string to upper case. The // syntax of the function is: // // UPPER(text) // func (fn *formulaFuncs) UPPER(argsList *list.List) formulaArg { if argsList.Len() != 1 { return newErrorFormulaArg(formulaErrorVALUE, "UPPER requires 1 argument") } return newStringFormulaArg(strings.ToUpper(argsList.Front().Value.(formulaArg).String)) } // Conditional Functions // IF function tests a supplied condition and returns one result if the // condition evaluates to TRUE, and another result if the condition evaluates // to FALSE. The syntax of the function is: // // IF(logical_test,value_if_true,value_if_false) // func (fn *formulaFuncs) IF(argsList *list.List) formulaArg { if argsList.Len() == 0 { return newErrorFormulaArg(formulaErrorVALUE, "IF requires at least 1 argument") } if argsList.Len() > 3 { return newErrorFormulaArg(formulaErrorVALUE, "IF accepts at most 3 arguments") } token := argsList.Front().Value.(formulaArg) var ( cond bool err error result string ) switch token.Type { case ArgString: if cond, err = strconv.ParseBool(token.String); err != nil { return newErrorFormulaArg(formulaErrorVALUE, err.Error()) } if argsList.Len() == 1 { return newBoolFormulaArg(cond) } if cond { return newStringFormulaArg(argsList.Front().Next().Value.(formulaArg).String) } if argsList.Len() == 3 { result = argsList.Back().Value.(formulaArg).String } } return newStringFormulaArg(result) } // Excel Lookup and Reference Functions // CHOOSE function returns a value from an array, that corresponds to a // supplied index number (position). The syntax of the function is: // // CHOOSE(index_num,value1,[value2],...) // func (fn *formulaFuncs) CHOOSE(argsList *list.List) formulaArg { if argsList.Len() < 2 { return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires 2 arguments") } idx, err := strconv.Atoi(argsList.Front().Value.(formulaArg).String) if err != nil { return newErrorFormulaArg(formulaErrorVALUE, "CHOOSE requires first argument of type number") } if argsList.Len() <= idx { return newErrorFormulaArg(formulaErrorVALUE, "index_num should be <= to the number of values") } arg := argsList.Front() for i := 0; i < idx; i++ { arg = arg.Next() } var result formulaArg switch arg.Value.(formulaArg).Type { case ArgString: result = newStringFormulaArg(arg.Value.(formulaArg).String) case ArgMatrix: result = newMatrixFormulaArg(arg.Value.(formulaArg).Matrix) } return result }