diff --git a/calc.go b/calc.go index e3db882..ada8496 100644 --- a/calc.go +++ b/calc.go @@ -333,6 +333,8 @@ type formulaFuncs struct { // BESSELJ // BESSELK // BESSELY +// BETAINV +// BETA.INV // BIN2DEC // BIN2HEX // BIN2OCT @@ -415,6 +417,7 @@ type formulaFuncs struct { // FALSE // FIND // FINDB +// F.INV.RT // FINV // FISHER // FISHERINV @@ -5187,966 +5190,1028 @@ func (fn *formulaFuncs) AVERAGEIF(argsList *list.List) formulaArg { return newNumberFormulaArg(sum / count) } -// incompleteGamma is an implementation of the incomplete gamma function. -func incompleteGamma(a, x float64) float64 { - max := 32 - summer := 0.0 - for n := 0; n <= max; n++ { - divisor := a - for i := 1; i <= n; i++ { - divisor *= (a + float64(i)) - } - summer += math.Pow(x, float64(n)) / divisor +// d1mach returns double precision real machine constants. +func d1mach(i int) float64 { + arr := []float64{ + 2.2250738585072014e-308, + 1.7976931348623158e+308, + 1.1102230246251565e-16, + 2.2204460492503131e-16, + 0.301029995663981195, } - return math.Pow(x, a) * math.Exp(0-x) * summer + if i > len(arr) { + return 0 + } + return arr[i-1] } -// CHIDIST function calculates the right-tailed probability of the chi-square -// distribution. The syntax of the function is: -// -// CHIDIST(x,degrees_freedom) -// -func (fn *formulaFuncs) CHIDIST(argsList *list.List) formulaArg { - if argsList.Len() != 2 { - return newErrorFormulaArg(formulaErrorVALUE, "CHIDIST requires 2 numeric arguments") - } - x := argsList.Front().Value.(formulaArg).ToNumber() - if x.Type != ArgNumber { - return x +// chebyshevInit determines the number of terms for the double precision +// orthogonal series "dos" needed to insure the error is no larger +// than "eta". Ordinarily eta will be chosen to be one-tenth machine +// precision. +func chebyshevInit(nos int, eta float64, dos []float64) int { + i, e := 0, 0.0 + if nos < 1 { + return 0 } - degress := argsList.Back().Value.(formulaArg).ToNumber() - if degress.Type != ArgNumber { - return degress + for ii := 1; ii <= nos; ii++ { + i = nos - ii + e += math.Abs(dos[i]) + if e > eta { + return i + } } - return newNumberFormulaArg(1 - (incompleteGamma(degress.Number/2, x.Number/2) / math.Gamma(degress.Number/2))) + return i } -// confidence is an implementation of the formula functions CONFIDENCE and -// CONFIDENCE.NORM. -func (fn *formulaFuncs) confidence(name string, argsList *list.List) formulaArg { - if argsList.Len() != 3 { - return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 numeric arguments", name)) +// chebyshevEval evaluates the n-term Chebyshev series "a" at "x". +func chebyshevEval(n int, x float64, a []float64) float64 { + if n < 1 || n > 1000 || x < -1.1 || x > 1.1 { + return math.NaN() } - alpha := argsList.Front().Value.(formulaArg).ToNumber() - if alpha.Type != ArgNumber { - return alpha + twox, b0, b1, b2 := x*2, 0.0, 0.0, 0.0 + for i := 1; i <= n; i++ { + b2 = b1 + b1 = b0 + b0 = twox*b1 - b2 + a[n-i] } - if alpha.Number <= 0 || alpha.Number >= 1 { - return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + return (b0 - b2) * 0.5 +} + +// lgammacor is an implementation for the log(gamma) correction. +func lgammacor(x float64) float64 { + algmcs := []float64{ + 0.1666389480451863247205729650822, -0.1384948176067563840732986059135e-4, + 0.9810825646924729426157171547487e-8, -0.1809129475572494194263306266719e-10, + 0.6221098041892605227126015543416e-13, -0.3399615005417721944303330599666e-15, + 0.2683181998482698748957538846666e-17, -0.2868042435334643284144622399999e-19, + 0.3962837061046434803679306666666e-21, -0.6831888753985766870111999999999e-23, + 0.1429227355942498147573333333333e-24, -0.3547598158101070547199999999999e-26, + 0.1025680058010470912000000000000e-27, -0.3401102254316748799999999999999e-29, + 0.1276642195630062933333333333333e-30, } - stdDev := argsList.Front().Next().Value.(formulaArg).ToNumber() - if stdDev.Type != ArgNumber { - return stdDev + nalgm := chebyshevInit(15, d1mach(3), algmcs) + xbig := 1.0 / math.Sqrt(d1mach(3)) + xmax := math.Exp(math.Min(math.Log(d1mach(2)/12.0), -math.Log(12.0*d1mach(1)))) + if x < 10.0 { + return math.NaN() + } else if x >= xmax { + return 4.930380657631324e-32 + } else if x < xbig { + tmp := 10.0 / x + return chebyshevEval(nalgm, tmp*tmp*2.0-1.0, algmcs) / x } - if stdDev.Number <= 0 { - return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + return 1.0 / (x * 12.0) +} + +// logrelerr compute the relative error logarithm. +func logrelerr(x float64) float64 { + alnrcs := []float64{ + 0.10378693562743769800686267719098e+1, -0.13364301504908918098766041553133, + 0.19408249135520563357926199374750e-1, -0.30107551127535777690376537776592e-2, + 0.48694614797154850090456366509137e-3, -0.81054881893175356066809943008622e-4, + 0.13778847799559524782938251496059e-4, -0.23802210894358970251369992914935e-5, + 0.41640416213865183476391859901989e-6, -0.73595828378075994984266837031998e-7, + 0.13117611876241674949152294345011e-7, -0.23546709317742425136696092330175e-8, + 0.42522773276034997775638052962567e-9, -0.77190894134840796826108107493300e-10, + 0.14075746481359069909215356472191e-10, -0.25769072058024680627537078627584e-11, + 0.47342406666294421849154395005938e-12, -0.87249012674742641745301263292675e-13, + 0.16124614902740551465739833119115e-13, -0.29875652015665773006710792416815e-14, + 0.55480701209082887983041321697279e-15, -0.10324619158271569595141333961932e-15, + 0.19250239203049851177878503244868e-16, -0.35955073465265150011189707844266e-17, + 0.67264542537876857892194574226773e-18, -0.12602624168735219252082425637546e-18, + 0.23644884408606210044916158955519e-19, -0.44419377050807936898878389179733e-20, + 0.83546594464034259016241293994666e-21, -0.15731559416479562574899253521066e-21, + 0.29653128740247422686154369706666e-22, -0.55949583481815947292156013226666e-23, + 0.10566354268835681048187284138666e-23, -0.19972483680670204548314999466666e-24, + 0.37782977818839361421049855999999e-25, -0.71531586889081740345038165333333e-26, + 0.13552488463674213646502024533333e-26, -0.25694673048487567430079829333333e-27, + 0.48747756066216949076459519999999e-28, -0.92542112530849715321132373333333e-29, + 0.17578597841760239233269760000000e-29, -0.33410026677731010351377066666666e-30, + 0.63533936180236187354180266666666e-31, } - size := argsList.Back().Value.(formulaArg).ToNumber() - if size.Type != ArgNumber { - return size + nlnrel := chebyshevInit(43, 0.1*d1mach(3), alnrcs) + if x <= -1 { + return math.NaN() } - if size.Number < 1 { - return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + if math.Abs(x) <= 0.375 { + return x * (1.0 - x*chebyshevEval(nlnrel, x/0.375, alnrcs)) } - args := list.New() - args.Init() - args.PushBack(newNumberFormulaArg(alpha.Number / 2)) - args.PushBack(newNumberFormulaArg(0)) - args.PushBack(newNumberFormulaArg(1)) - return newNumberFormulaArg(-fn.NORMINV(args).Number * (stdDev.Number / math.Sqrt(size.Number))) -} - -// CONFIDENCE function uses a Normal Distribution to calculate a confidence -// value that can be used to construct the Confidence Interval for a -// population mean, for a supplied probablity and sample size. It is assumed -// that the standard deviation of the population is known. The syntax of the -// function is: -// -// CONFIDENCE(alpha,standard_dev,size) -// -func (fn *formulaFuncs) CONFIDENCE(argsList *list.List) formulaArg { - return fn.confidence("CONFIDENCE", argsList) -} - -// CONFIDENCEdotNORM function uses a Normal Distribution to calculate a -// confidence value that can be used to construct the confidence interval for -// a population mean, for a supplied probablity and sample size. It is -// assumed that the standard deviation of the population is known. The syntax -// of the Confidence.Norm function is: -// -// CONFIDENCE.NORM(alpha,standard_dev,size) -// -func (fn *formulaFuncs) CONFIDENCEdotNORM(argsList *list.List) formulaArg { - return fn.confidence("CONFIDENCE.NORM", argsList) + return math.Log(x + 1.0) } -// COVAR function calculates the covariance of two supplied sets of values. The -// syntax of the function is: -// -// COVAR(array1,array2) -// -func (fn *formulaFuncs) COVAR(argsList *list.List) formulaArg { - if argsList.Len() != 2 { - return newErrorFormulaArg(formulaErrorVALUE, "COVAR requires 2 arguments") +// logBeta is an implementation for the log of the beta distribution +// function. +func logBeta(a, b float64) float64 { + corr, p, q := 0.0, a, a + if b < p { + p = b } - array1 := argsList.Front().Value.(formulaArg) - array2 := argsList.Back().Value.(formulaArg) - left, right := array1.ToList(), array2.ToList() - n := len(left) - if n != len(right) { - return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) + if b > q { + q = b } - l1, l2 := list.New(), list.New() - l1.PushBack(array1) - l2.PushBack(array2) - result, skip := 0.0, 0 - mean1, mean2 := fn.AVERAGE(l1), fn.AVERAGE(l2) - for i := 0; i < n; i++ { - arg1 := left[i].ToNumber() - arg2 := right[i].ToNumber() - if arg1.Type == ArgError || arg2.Type == ArgError { - skip++ - continue - } - result += (arg1.Number - mean1.Number) * (arg2.Number - mean2.Number) + if p < 0 { + return math.NaN() } - return newNumberFormulaArg(result / float64(n-skip)) -} - -// COVARIANCEdotP function calculates the population covariance of two supplied -// sets of values. The syntax of the function is: -// -// COVARIANCE.P(array1,array2) -// -func (fn *formulaFuncs) COVARIANCEdotP(argsList *list.List) formulaArg { - if argsList.Len() != 2 { - return newErrorFormulaArg(formulaErrorVALUE, "COVARIANCE.P requires 2 arguments") + if p == 0 { + return math.MaxFloat64 } - return fn.COVAR(argsList) -} - -// calcStringCountSum is part of the implementation countSum. -func calcStringCountSum(countText bool, count, sum float64, num, arg formulaArg) (float64, float64) { - if countText && num.Type == ArgError && arg.String != "" { - count++ + if p >= 10.0 { + corr = lgammacor(p) + lgammacor(q) - lgammacor(p+q) + return math.Log(q)*-0.5 + 0.918938533204672741780329736406 + corr + (p-0.5)*math.Log(p/(p+q)) + q*logrelerr(-p/(p+q)) } - if num.Type == ArgNumber { - sum += num.Number - count++ + if q >= 10 { + corr = lgammacor(q) - lgammacor(p+q) + val, _ := math.Lgamma(p) + return val + corr + p - p*math.Log(p+q) + (q-0.5)*logrelerr(-p/(p+q)) } - return count, sum + return math.Log(math.Gamma(p) * (math.Gamma(q) / math.Gamma(p+q))) } -// countSum get count and sum for a formula arguments array. -func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) { - for _, arg := range args { - switch arg.Type { - case ArgNumber: - if countText || !arg.Boolean { - sum += arg.Number - count++ - } - case ArgString: - if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") { - continue - } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") { - num := arg.ToBool() - if num.Type == ArgNumber { - count++ - sum += num.Number - continue - } +// pbetaRaw is a part of pbeta for the beta distribution. +func pbetaRaw(alnsml, ans, eps, p, pin, q, sml, x, y float64) float64 { + if q > 1.0 { + xb := p*math.Log(y) + q*math.Log(1.0-y) - logBeta(p, q) - math.Log(q) + ib := int(math.Max(xb/alnsml, 0.0)) + term := math.Exp(xb - float64(ib)*alnsml) + c := 1.0 / (1.0 - y) + p1 := q * c / (p + q - 1.0) + finsum := 0.0 + n := int(q) + if q == float64(n) { + n = n - 1 + } + for i := 1; i <= n; i++ { + if p1 <= 1 && term/eps <= finsum { + break + } + xi := float64(i) + term = (q - xi + 1.0) * c * term / (p + q - xi) + if term > 1.0 { + ib = ib - 1 + term = term * sml + } + if ib == 0 { + finsum = finsum + term } - num := arg.ToNumber() - count, sum = calcStringCountSum(countText, count, sum, num, arg) - case ArgList, ArgMatrix: - cnt, summary := fn.countSum(countText, arg.ToList()) - sum += summary - count += cnt } + ans = ans + finsum } - return + if y != x || p != pin { + ans = 1.0 - ans + } + ans = math.Max(math.Min(ans, 1.0), 0.0) + return ans } -// CORREL function calculates the Pearson Product-Moment Correlation -// Coefficient for two sets of values. The syntax of the function is: -// -// CORREL(array1,array2) -// -func (fn *formulaFuncs) CORREL(argsList *list.List) formulaArg { - if argsList.Len() != 2 { - return newErrorFormulaArg(formulaErrorVALUE, "CORREL requires 2 arguments") - } - array1 := argsList.Front().Value.(formulaArg) - array2 := argsList.Back().Value.(formulaArg) - left, right := array1.ToList(), array2.ToList() - n := len(left) - if n != len(right) { - return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) +// pbeta returns distribution function of the beta distribution. +func pbeta(x, pin, qin float64) (ans float64) { + eps := d1mach(3) + alneps := math.Log(eps) + sml := d1mach(1) + alnsml := math.Log(sml) + y := x + p := pin + q := qin + if p/(p+q) < x { + y = 1.0 - y + p = qin + q = pin } - l1, l2, l3 := list.New(), list.New(), list.New() - for i := 0; i < n; i++ { - if lhs, rhs := left[i].ToNumber(), right[i].ToNumber(); lhs.Number != 0 && rhs.Number != 0 { - l1.PushBack(lhs) - l2.PushBack(rhs) + if (p+q)*y/(p+1.0) < eps { + xb := p*math.Log(math.Max(y, sml)) - math.Log(p) - logBeta(p, q) + if xb > alnsml && y != 0.0 { + ans = math.Exp(xb) } - } - stdev1, stdev2 := fn.STDEV(l1), fn.STDEV(l2) - if stdev1.Number == 0 || stdev2.Number == 0 { - return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) - } - mean1, mean2, skip := fn.AVERAGE(l1), fn.AVERAGE(l2), 0 - for i := 0; i < n; i++ { - lhs, rhs := left[i].ToNumber(), right[i].ToNumber() - if lhs.Number == 0 || rhs.Number == 0 { - skip++ - continue + if y != x || p != pin { + ans = 1.0 - ans } - l3.PushBack(newNumberFormulaArg((lhs.Number - mean1.Number) * (rhs.Number - mean2.Number))) - } - return newNumberFormulaArg(fn.SUM(l3).Number / float64(n-skip-1) / stdev1.Number / stdev2.Number) -} - -// COUNT function returns the count of numeric values in a supplied set of -// cells or values. This count includes both numbers and dates. The syntax of -// the function is: -// -// COUNT(value1,[value2],...) -// -func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg { - var count int - for token := argsList.Front(); token != nil; token = token.Next() { - arg := token.Value.(formulaArg) - switch arg.Type { - case ArgString: - if arg.ToNumber().Type != ArgError { - count++ - } - case ArgNumber: - count++ - case ArgMatrix: - for _, row := range arg.Matrix { - for _, value := range row { - if value.ToNumber().Type != ArgError { - count++ - } + } else { + ps := q - math.Floor(q) + if ps == 0.0 { + ps = 1.0 + } + xb := p*math.Log(y) - logBeta(ps, p) - math.Log(p) + if xb >= alnsml { + ans = math.Exp(xb) + term := ans * p + if ps != 1.0 { + n := int(math.Max(alneps/math.Log(y), 4.0)) + for i := 1; i <= n; i++ { + xi := float64(i) + term = term * (xi - ps) * y / xi + ans = ans + term/(p+xi) } } } + ans = pbetaRaw(alnsml, ans, eps, p, pin, q, sml, x, y) } - return newNumberFormulaArg(float64(count)) + return ans } -// COUNTA function returns the number of non-blanks within a supplied set of -// cells or values. The syntax of the function is: -// -// COUNTA(value1,[value2],...) -// -func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg { - var count int - for token := argsList.Front(); token != nil; token = token.Next() { - arg := token.Value.(formulaArg) - switch arg.Type { - case ArgString: - if arg.String != "" { - count++ - } - case ArgNumber: - count++ - case ArgMatrix: - for _, row := range arg.ToList() { - switch row.Type { - case ArgString: - if row.String != "" { - count++ +// betainvProbIterator is a part of betainv for the inverse of the beta +// function. +func betainvProbIterator(alpha1, alpha3, beta1, beta2, beta3, logbeta, lower, maxCumulative, prob1, prob2, upper float64, needSwap bool) float64 { + var i, j, prev, prop4 float64 + j = 1 + for prob := 0; prob < 1000; prob++ { + prop3 := pbeta(beta3, alpha1, beta1) + prop3 = (prop3 - prob1) * math.Exp(logbeta+prob2*math.Log(beta3)+beta2*math.Log(1.0-beta3)) + if prop3*prop4 <= 0 { + prev = math.Max(math.Abs(j), maxCumulative) + } + h := 1.0 + for iteratorCount := 0; iteratorCount < 1000; iteratorCount++ { + j = h * prop3 + if math.Abs(j) < prev { + i = beta3 - j + if i >= 0 && i <= 1.0 { + if prev <= alpha3 { + return beta3 + } + if math.Abs(prop3) <= alpha3 { + return beta3 + } + if i != 0 && i != 1.0 { + break } - case ArgNumber: - count++ } } + h /= 3.0 + } + if i == beta3 { + return beta3 } + beta3, prop4 = i, prop3 } - return newNumberFormulaArg(float64(count)) + return beta3 } -// COUNTBLANK function returns the number of blank cells in a supplied range. -// The syntax of the function is: -// -// COUNTBLANK(range) -// -func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg { - if argsList.Len() != 1 { - return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument") +// calcBetainv is an implementation for the quantile of the beta +// distribution. +func calcBetainv(probability, alpha, beta, lower, upper float64) float64 { + minCumulative, maxCumulative := 1.0e-300, 3.0e-308 + lowerBound, upperBound := maxCumulative, 1.0-2.22e-16 + needSwap := false + var alpha1, alpha2, beta1, beta2, beta3, prob1, x, y float64 + if probability <= 0.5 { + prob1, alpha1, beta1 = probability, alpha, beta + } else { + prob1, alpha1, beta1, needSwap = 1.0-probability, beta, alpha, true } - var count float64 - for _, cell := range argsList.Front().Value.(formulaArg).ToList() { - if cell.Value() == "" { - count++ + logbeta := logBeta(alpha, beta) + prob2 := math.Sqrt(-math.Log(prob1 * prob1)) + prob3 := prob2 - (prob2*0.27061+2.3075)/(prob2*(prob2*0.04481+0.99229)+1) + if alpha1 > 1 && beta1 > 1 { + alpha2, beta2, prob2 = 1/(alpha1+alpha1-1), 1/(beta1+beta1-1), (prob3*prob3-3)/6 + x = 2 / (alpha2 + beta2) + y = prob3*math.Sqrt(x+prob2)/x - (beta2-alpha2)*(prob2+5/6.0-2/(x*3)) + beta3 = alpha1 / (alpha1 + beta1*math.Exp(y+y)) + } else { + beta2, prob2 = 1/(beta1*9), beta1+beta1 + beta2 = prob2 * math.Pow(1-beta2+prob3*math.Sqrt(beta2), 3) + if beta2 <= 0 { + beta3 = 1 - math.Exp((math.Log((1-prob1)*beta1)+logbeta)/beta1) + } else { + beta2 = (prob2 + alpha1*4 - 2) / beta2 + if beta2 <= 1 { + beta3 = math.Exp((logbeta + math.Log(alpha1*prob1)) / alpha1) + } else { + beta3 = 1 - 2/(beta2+1) + } } } - return newNumberFormulaArg(count) + beta2, prob2 = 1-beta1, 1-alpha1 + if beta3 < lowerBound { + beta3 = lowerBound + } else if beta3 > upperBound { + beta3 = upperBound + } + alpha3 := math.Max(minCumulative, math.Pow(10.0, -13.0-2.5/(alpha1*alpha1)-0.5/(prob1*prob1))) + beta3 = betainvProbIterator(alpha1, alpha3, beta1, beta2, beta3, logbeta, lower, maxCumulative, prob1, prob2, upper, needSwap) + if needSwap { + beta3 = 1.0 - beta3 + } + return (upper-lower)*beta3 + lower } -// COUNTIF function returns the number of cells within a supplied range, that -// satisfy a given criteria. The syntax of the function is: -// -// COUNTIF(range,criteria) -// -func (fn *formulaFuncs) COUNTIF(argsList *list.List) formulaArg { - if argsList.Len() != 2 { - return newErrorFormulaArg(formulaErrorVALUE, "COUNTIF requires 2 arguments") +// betainv is an implementation of the formula functions BETAINV and +// BETA.INV. +func (fn *formulaFuncs) betainv(name string, argsList *list.List) formulaArg { + if argsList.Len() < 3 { + return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at least 3 arguments", name)) } - var ( - criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String) - count float64 - ) - for _, cell := range argsList.Front().Value.(formulaArg).ToList() { - if ok, _ := formulaCriteriaEval(cell.Value(), criteria); ok { - count++ - } + if argsList.Len() > 5 { + return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires at most 5 arguments", name)) } - return newNumberFormulaArg(count) -} - -// formulaIfsMatch function returns cells reference array which match criteria. -func formulaIfsMatch(args []formulaArg) (cellRefs []cellRef) { - for i := 0; i < len(args)-1; i += 2 { - match := []cellRef{} - matrix, criteria := args[i].Matrix, formulaCriteriaParser(args[i+1].Value()) - if i == 0 { - for rowIdx, row := range matrix { - for colIdx, col := range row { - if ok, _ := formulaCriteriaEval(col.Value(), criteria); ok { - match = append(match, cellRef{Col: colIdx, Row: rowIdx}) - } - } - } - } else { - for _, ref := range cellRefs { - value := matrix[ref.Row][ref.Col] - if ok, _ := formulaCriteriaEval(value.Value(), criteria); ok { - match = append(match, ref) - } - } - } - if len(match) == 0 { - return - } - cellRefs = match[:] + probability := argsList.Front().Value.(formulaArg).ToNumber() + if probability.Type != ArgNumber { + return probability } - return -} - -// COUNTIFS function returns the number of rows within a table, that satisfy a -// set of given criteria. The syntax of the function is: -// -// COUNTIFS(criteria_range1,criteria1,[criteria_range2,criteria2],...) -// -func (fn *formulaFuncs) COUNTIFS(argsList *list.List) formulaArg { - if argsList.Len() < 2 { - return newErrorFormulaArg(formulaErrorVALUE, "COUNTIFS requires at least 2 arguments") + if probability.Number <= 0 || probability.Number >= 1 { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } - if argsList.Len()%2 != 0 { - return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) + alpha := argsList.Front().Next().Value.(formulaArg).ToNumber() + if alpha.Type != ArgNumber { + return alpha } - args := []formulaArg{} - for arg := argsList.Front(); arg != nil; arg = arg.Next() { - args = append(args, arg.Value.(formulaArg)) + beta := argsList.Front().Next().Next().Value.(formulaArg).ToNumber() + if beta.Type != ArgNumber { + return beta } - return newNumberFormulaArg(float64(len(formulaIfsMatch(args)))) -} - -// DEVSQ function calculates the sum of the squared deviations from the sample -// mean. The syntax of the function is: -// -// DEVSQ(number1,[number2],...) -// -func (fn *formulaFuncs) DEVSQ(argsList *list.List) formulaArg { - if argsList.Len() < 1 { - return newErrorFormulaArg(formulaErrorVALUE, "DEVSQ requires at least 1 numeric argument") + if alpha.Number <= 0 || beta.Number <= 0 { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } - avg, count, result := fn.AVERAGE(argsList), -1, 0.0 - for arg := argsList.Front(); arg != nil; arg = arg.Next() { - for _, number := range arg.Value.(formulaArg).ToList() { - num := number.ToNumber() - if num.Type != ArgNumber { - continue - } - count++ - if count == 0 { - result = math.Pow(num.Number-avg.Number, 2) - continue - } - result += math.Pow(num.Number-avg.Number, 2) + a, b := newNumberFormulaArg(0), newNumberFormulaArg(1) + if argsList.Len() > 3 { + if a = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); a.Type != ArgNumber { + return a } } - if count == -1 { - return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) + if argsList.Len() == 5 { + if b = argsList.Back().Value.(formulaArg).ToNumber(); b.Type != ArgNumber { + return b + } } - return newNumberFormulaArg(result) + if a.Number == b.Number { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + } + return newNumberFormulaArg(calcBetainv(probability.Number, alpha.Number, beta.Number, a.Number, b.Number)) } -// FISHER function calculates the Fisher Transformation for a supplied value. -// The syntax of the function is: +// BETAINV function uses an iterative procedure to calculate the inverse of +// the cumulative beta probability density function for a supplied +// probability. The syntax of the function is: // -// FISHER(x) +// BETAINV(probability,alpha,beta,[A],[B]) // -func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg { - if argsList.Len() != 1 { - return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument") - } - token := argsList.Front().Value.(formulaArg) - switch token.Type { - case ArgString: - arg := token.ToNumber() - if arg.Type == ArgNumber { - if arg.Number <= -1 || arg.Number >= 1 { - return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) - } - return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number))) - } - case ArgNumber: - if token.Number <= -1 || token.Number >= 1 { - return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) - } - return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number))) - } - return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument") +func (fn *formulaFuncs) BETAINV(argsList *list.List) formulaArg { + return fn.betainv("BETAINV", argsList) } -// FISHERINV function calculates the inverse of the Fisher Transformation and -// returns a value between -1 and +1. The syntax of the function is: +// BETAdotINV function uses an iterative procedure to calculate the inverse of +// the cumulative beta probability density function for a supplied +// probability. The syntax of the function is: // -// FISHERINV(y) +// BETA.INV(probability,alpha,beta,[A],[B]) // -func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg { - if argsList.Len() != 1 { - return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument") - } - token := argsList.Front().Value.(formulaArg) - switch token.Type { - case ArgString: - arg := token.ToNumber() - if arg.Type == ArgNumber { - return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1)) - } - case ArgNumber: - return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1)) - } - return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument") +func (fn *formulaFuncs) BETAdotINV(argsList *list.List) formulaArg { + return fn.betainv("BETA.INV", argsList) } -// GAMMA function returns the value of the Gamma Function, Γ(n), for a -// specified number, n. The syntax of the function is: -// -// GAMMA(number) -// -func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg { - if argsList.Len() != 1 { - return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument") - } - token := argsList.Front().Value.(formulaArg) - switch token.Type { - case ArgString: - arg := token.ToNumber() - if arg.Type == ArgNumber { - if arg.Number <= 0 { - return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) - } - return newNumberFormulaArg(math.Gamma(arg.Number)) - } - case ArgNumber: - if token.Number <= 0 { - return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) +// incompleteGamma is an implementation of the incomplete gamma function. +func incompleteGamma(a, x float64) float64 { + max := 32 + summer := 0.0 + for n := 0; n <= max; n++ { + divisor := a + for i := 1; i <= n; i++ { + divisor *= (a + float64(i)) } - return newNumberFormulaArg(math.Gamma(token.Number)) + summer += math.Pow(x, float64(n)) / divisor } - return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument") + return math.Pow(x, a) * math.Exp(0-x) * summer } -// GAMMALN function returns the natural logarithm of the Gamma Function, Γ -// (n). The syntax of the function is: +// CHIDIST function calculates the right-tailed probability of the chi-square +// distribution. The syntax of the function is: // -// GAMMALN(x) +// CHIDIST(x,degrees_freedom) // -func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg { - if argsList.Len() != 1 { - return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument") +func (fn *formulaFuncs) CHIDIST(argsList *list.List) formulaArg { + if argsList.Len() != 2 { + return newErrorFormulaArg(formulaErrorVALUE, "CHIDIST requires 2 numeric arguments") } - token := argsList.Front().Value.(formulaArg) - switch token.Type { - case ArgString: - arg := token.ToNumber() - if arg.Type == ArgNumber { - if arg.Number <= 0 { - return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) - } - return newNumberFormulaArg(math.Log(math.Gamma(arg.Number))) - } - case ArgNumber: - if token.Number <= 0 { - return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) - } - return newNumberFormulaArg(math.Log(math.Gamma(token.Number))) + x := argsList.Front().Value.(formulaArg).ToNumber() + if x.Type != ArgNumber { + return x } - return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument") + degress := argsList.Back().Value.(formulaArg).ToNumber() + if degress.Type != ArgNumber { + return degress + } + return newNumberFormulaArg(1 - (incompleteGamma(degress.Number/2, x.Number/2) / math.Gamma(degress.Number/2))) } -// GEOMEAN function calculates the geometric mean of a supplied set of values. -// The syntax of the function is: -// -// GEOMEAN(number1,[number2],...) -// -func (fn *formulaFuncs) GEOMEAN(argsList *list.List) formulaArg { - if argsList.Len() < 1 { - return newErrorFormulaArg(formulaErrorVALUE, "GEOMEAN requires at least 1 numeric argument") +// confidence is an implementation of the formula functions CONFIDENCE and +// CONFIDENCE.NORM. +func (fn *formulaFuncs) confidence(name string, argsList *list.List) formulaArg { + if argsList.Len() != 3 { + return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 numeric arguments", name)) } - product := fn.PRODUCT(argsList) - if product.Type != ArgNumber { - return product + alpha := argsList.Front().Value.(formulaArg).ToNumber() + if alpha.Type != ArgNumber { + return alpha } - count := fn.COUNT(argsList) - min := fn.MIN(argsList) - if product.Number > 0 && min.Number > 0 { - return newNumberFormulaArg(math.Pow(product.Number, (1 / count.Number))) + if alpha.Number <= 0 || alpha.Number >= 1 { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } - return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + stdDev := argsList.Front().Next().Value.(formulaArg).ToNumber() + if stdDev.Type != ArgNumber { + return stdDev + } + if stdDev.Number <= 0 { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + } + size := argsList.Back().Value.(formulaArg).ToNumber() + if size.Type != ArgNumber { + return size + } + if size.Number < 1 { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + } + args := list.New() + args.Init() + args.PushBack(newNumberFormulaArg(alpha.Number / 2)) + args.PushBack(newNumberFormulaArg(0)) + args.PushBack(newNumberFormulaArg(1)) + return newNumberFormulaArg(-fn.NORMINV(args).Number * (stdDev.Number / math.Sqrt(size.Number))) } -// HARMEAN function calculates the harmonic mean of a supplied set of values. -// The syntax of the function is: +// CONFIDENCE function uses a Normal Distribution to calculate a confidence +// value that can be used to construct the Confidence Interval for a +// population mean, for a supplied probablity and sample size. It is assumed +// that the standard deviation of the population is known. The syntax of the +// function is: // -// HARMEAN(number1,[number2],...) +// CONFIDENCE(alpha,standard_dev,size) // -func (fn *formulaFuncs) HARMEAN(argsList *list.List) formulaArg { - if argsList.Len() < 1 { - return newErrorFormulaArg(formulaErrorVALUE, "HARMEAN requires at least 1 argument") +func (fn *formulaFuncs) CONFIDENCE(argsList *list.List) formulaArg { + return fn.confidence("CONFIDENCE", argsList) +} + +// CONFIDENCEdotNORM function uses a Normal Distribution to calculate a +// confidence value that can be used to construct the confidence interval for +// a population mean, for a supplied probablity and sample size. It is +// assumed that the standard deviation of the population is known. The syntax +// of the Confidence.Norm function is: +// +// CONFIDENCE.NORM(alpha,standard_dev,size) +// +func (fn *formulaFuncs) CONFIDENCEdotNORM(argsList *list.List) formulaArg { + return fn.confidence("CONFIDENCE.NORM", argsList) +} + +// COVAR function calculates the covariance of two supplied sets of values. The +// syntax of the function is: +// +// COVAR(array1,array2) +// +func (fn *formulaFuncs) COVAR(argsList *list.List) formulaArg { + if argsList.Len() != 2 { + return newErrorFormulaArg(formulaErrorVALUE, "COVAR requires 2 arguments") } - if min := fn.MIN(argsList); min.Number < 0 { + array1 := argsList.Front().Value.(formulaArg) + array2 := argsList.Back().Value.(formulaArg) + left, right := array1.ToList(), array2.ToList() + n := len(left) + if n != len(right) { return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } - number, val, cnt := 0.0, 0.0, 0.0 - for token := argsList.Front(); token != nil; token = token.Next() { - arg := token.Value.(formulaArg) + l1, l2 := list.New(), list.New() + l1.PushBack(array1) + l2.PushBack(array2) + result, skip := 0.0, 0 + mean1, mean2 := fn.AVERAGE(l1), fn.AVERAGE(l2) + for i := 0; i < n; i++ { + arg1 := left[i].ToNumber() + arg2 := right[i].ToNumber() + if arg1.Type == ArgError || arg2.Type == ArgError { + skip++ + continue + } + result += (arg1.Number - mean1.Number) * (arg2.Number - mean2.Number) + } + return newNumberFormulaArg(result / float64(n-skip)) +} + +// COVARIANCEdotP function calculates the population covariance of two supplied +// sets of values. The syntax of the function is: +// +// COVARIANCE.P(array1,array2) +// +func (fn *formulaFuncs) COVARIANCEdotP(argsList *list.List) formulaArg { + if argsList.Len() != 2 { + return newErrorFormulaArg(formulaErrorVALUE, "COVARIANCE.P requires 2 arguments") + } + return fn.COVAR(argsList) +} + +// calcStringCountSum is part of the implementation countSum. +func calcStringCountSum(countText bool, count, sum float64, num, arg formulaArg) (float64, float64) { + if countText && num.Type == ArgError && arg.String != "" { + count++ + } + if num.Type == ArgNumber { + sum += num.Number + count++ + } + return count, sum +} + +// countSum get count and sum for a formula arguments array. +func (fn *formulaFuncs) countSum(countText bool, args []formulaArg) (count, sum float64) { + for _, arg := range args { switch arg.Type { + case ArgNumber: + if countText || !arg.Boolean { + sum += arg.Number + count++ + } case ArgString: - num := arg.ToNumber() - if num.Type != ArgNumber { + if !countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") { continue + } else if countText && (arg.Value() == "TRUE" || arg.Value() == "FALSE") { + num := arg.ToBool() + if num.Type == ArgNumber { + count++ + sum += num.Number + continue + } } - number = num.Number - case ArgNumber: - number = arg.Number - } - if number <= 0 { - return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) + num := arg.ToNumber() + count, sum = calcStringCountSum(countText, count, sum, num, arg) + case ArgList, ArgMatrix: + cnt, summary := fn.countSum(countText, arg.ToList()) + sum += summary + count += cnt } - val += (1 / number) - cnt++ } - return newNumberFormulaArg(1 / (val / cnt)) + return } -// KURT function calculates the kurtosis of a supplied set of values. The -// syntax of the function is: +// CORREL function calculates the Pearson Product-Moment Correlation +// Coefficient for two sets of values. The syntax of the function is: // -// KURT(number1,[number2],...) +// CORREL(array1,array2) // -func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg { - if argsList.Len() < 1 { - return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument") +func (fn *formulaFuncs) CORREL(argsList *list.List) formulaArg { + if argsList.Len() != 2 { + return newErrorFormulaArg(formulaErrorVALUE, "CORREL requires 2 arguments") } - mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList) - if stdev.Number > 0 { - count, summer := 0.0, 0.0 - for arg := argsList.Front(); arg != nil; arg = arg.Next() { - token := arg.Value.(formulaArg) - switch token.Type { - case ArgString, ArgNumber: - num := token.ToNumber() - if num.Type == ArgError { - continue - } - summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4) + array1 := argsList.Front().Value.(formulaArg) + array2 := argsList.Back().Value.(formulaArg) + left, right := array1.ToList(), array2.ToList() + n := len(left) + if n != len(right) { + return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) + } + l1, l2, l3 := list.New(), list.New(), list.New() + for i := 0; i < n; i++ { + if lhs, rhs := left[i].ToNumber(), right[i].ToNumber(); lhs.Number != 0 && rhs.Number != 0 { + l1.PushBack(lhs) + l2.PushBack(rhs) + } + } + stdev1, stdev2 := fn.STDEV(l1), fn.STDEV(l2) + if stdev1.Number == 0 || stdev2.Number == 0 { + return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) + } + mean1, mean2, skip := fn.AVERAGE(l1), fn.AVERAGE(l2), 0 + for i := 0; i < n; i++ { + lhs, rhs := left[i].ToNumber(), right[i].ToNumber() + if lhs.Number == 0 || rhs.Number == 0 { + skip++ + continue + } + l3.PushBack(newNumberFormulaArg((lhs.Number - mean1.Number) * (rhs.Number - mean2.Number))) + } + return newNumberFormulaArg(fn.SUM(l3).Number / float64(n-skip-1) / stdev1.Number / stdev2.Number) +} + +// COUNT function returns the count of numeric values in a supplied set of +// cells or values. This count includes both numbers and dates. The syntax of +// the function is: +// +// COUNT(value1,[value2],...) +// +func (fn *formulaFuncs) COUNT(argsList *list.List) formulaArg { + var count int + for token := argsList.Front(); token != nil; token = token.Next() { + arg := token.Value.(formulaArg) + switch arg.Type { + case ArgString: + if arg.ToNumber().Type != ArgError { count++ - case ArgList, ArgMatrix: - for _, row := range token.ToList() { - if row.Type == ArgNumber || row.Type == ArgString { - num := row.ToNumber() - if num.Type == ArgError { - continue - } - summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4) + } + case ArgNumber: + count++ + case ArgMatrix: + for _, row := range arg.Matrix { + for _, value := range row { + if value.ToNumber().Type != ArgError { count++ } } } } - if count > 3 { - return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3)))) - } } - return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) + return newNumberFormulaArg(float64(count)) } -// EXPONdotDIST function returns the value of the exponential distribution for -// a give value of x. The user can specify whether the probability density -// function or the cumulative distribution function is used. The syntax of the -// Expondist function is: +// COUNTA function returns the number of non-blanks within a supplied set of +// cells or values. The syntax of the function is: // -// EXPON.DIST(x,lambda,cumulative) +// COUNTA(value1,[value2],...) // -func (fn *formulaFuncs) EXPONdotDIST(argsList *list.List) formulaArg { - if argsList.Len() != 3 { - return newErrorFormulaArg(formulaErrorVALUE, "EXPON.DIST requires 3 arguments") +func (fn *formulaFuncs) COUNTA(argsList *list.List) formulaArg { + var count int + for token := argsList.Front(); token != nil; token = token.Next() { + arg := token.Value.(formulaArg) + switch arg.Type { + case ArgString: + if arg.String != "" { + count++ + } + case ArgNumber: + count++ + case ArgMatrix: + for _, row := range arg.ToList() { + switch row.Type { + case ArgString: + if row.String != "" { + count++ + } + case ArgNumber: + count++ + } + } + } } - return fn.EXPONDIST(argsList) + return newNumberFormulaArg(float64(count)) } -// EXPONDIST function returns the value of the exponential distribution for a -// give value of x. The user can specify whether the probability density -// function or the cumulative distribution function is used. The syntax of the -// Expondist function is: +// COUNTBLANK function returns the number of blank cells in a supplied range. +// The syntax of the function is: // -// EXPONDIST(x,lambda,cumulative) +// COUNTBLANK(range) // -func (fn *formulaFuncs) EXPONDIST(argsList *list.List) formulaArg { - if argsList.Len() != 3 { - return newErrorFormulaArg(formulaErrorVALUE, "EXPONDIST requires 3 arguments") - } - var x, lambda, cumulative formulaArg - if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber { - return x - } - if lambda = argsList.Front().Next().Value.(formulaArg).ToNumber(); lambda.Type != ArgNumber { - return lambda +func (fn *formulaFuncs) COUNTBLANK(argsList *list.List) formulaArg { + if argsList.Len() != 1 { + return newErrorFormulaArg(formulaErrorVALUE, "COUNTBLANK requires 1 argument") } - if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError { - return cumulative - } - if x.Number < 0 { - return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) - } - if lambda.Number <= 0 { - return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) - } - if cumulative.Number == 1 { - return newNumberFormulaArg(1 - math.Exp(-lambda.Number*x.Number)) + var count float64 + for _, cell := range argsList.Front().Value.(formulaArg).ToList() { + if cell.Value() == "" { + count++ + } } - return newNumberFormulaArg(lambda.Number * math.Exp(-lambda.Number*x.Number)) + return newNumberFormulaArg(count) } -// d1mach returns double precision real machine constants. -func d1mach(i int) float64 { - arr := []float64{ - 2.2250738585072014e-308, - 1.7976931348623158e+308, - 1.1102230246251565e-16, - 2.2204460492503131e-16, - 0.301029995663981195, +// COUNTIF function returns the number of cells within a supplied range, that +// satisfy a given criteria. The syntax of the function is: +// +// COUNTIF(range,criteria) +// +func (fn *formulaFuncs) COUNTIF(argsList *list.List) formulaArg { + if argsList.Len() != 2 { + return newErrorFormulaArg(formulaErrorVALUE, "COUNTIF requires 2 arguments") } - if i > len(arr) { - return 0 + var ( + criteria = formulaCriteriaParser(argsList.Front().Next().Value.(formulaArg).String) + count float64 + ) + for _, cell := range argsList.Front().Value.(formulaArg).ToList() { + if ok, _ := formulaCriteriaEval(cell.Value(), criteria); ok { + count++ + } } - return arr[i-1] + return newNumberFormulaArg(count) } -// chebyshevInit determines the number of terms for the double precision -// orthogonal series "dos" needed to insure the error is no larger -// than "eta". Ordinarily eta will be chosen to be one-tenth machine -// precision. -func chebyshevInit(nos int, eta float64, dos []float64) int { - i, e := 0, 0.0 - if nos < 1 { - return 0 - } - for ii := 1; ii <= nos; ii++ { - i = nos - ii - e += math.Abs(dos[i]) - if e > eta { - return i +// formulaIfsMatch function returns cells reference array which match criteria. +func formulaIfsMatch(args []formulaArg) (cellRefs []cellRef) { + for i := 0; i < len(args)-1; i += 2 { + match := []cellRef{} + matrix, criteria := args[i].Matrix, formulaCriteriaParser(args[i+1].Value()) + if i == 0 { + for rowIdx, row := range matrix { + for colIdx, col := range row { + if ok, _ := formulaCriteriaEval(col.Value(), criteria); ok { + match = append(match, cellRef{Col: colIdx, Row: rowIdx}) + } + } + } + } else { + for _, ref := range cellRefs { + value := matrix[ref.Row][ref.Col] + if ok, _ := formulaCriteriaEval(value.Value(), criteria); ok { + match = append(match, ref) + } + } + } + if len(match) == 0 { + return } + cellRefs = match[:] } - return i + return } -// chebyshevEval evaluates the n-term Chebyshev series "a" at "x". -func chebyshevEval(n int, x float64, a []float64) float64 { - if n < 1 || n > 1000 || x < -1.1 || x > 1.1 { - return math.NaN() - } - twox, b0, b1, b2 := x*2, 0.0, 0.0, 0.0 - for i := 1; i <= n; i++ { - b2 = b1 - b1 = b0 - b0 = twox*b1 - b2 + a[n-i] +// COUNTIFS function returns the number of rows within a table, that satisfy a +// set of given criteria. The syntax of the function is: +// +// COUNTIFS(criteria_range1,criteria1,[criteria_range2,criteria2],...) +// +func (fn *formulaFuncs) COUNTIFS(argsList *list.List) formulaArg { + if argsList.Len() < 2 { + return newErrorFormulaArg(formulaErrorVALUE, "COUNTIFS requires at least 2 arguments") } - return (b0 - b2) * 0.5 -} - -// lgammacor is an implementation for the log(gamma) correction. -func lgammacor(x float64) float64 { - algmcs := []float64{ - 0.1666389480451863247205729650822, -0.1384948176067563840732986059135e-4, - 0.9810825646924729426157171547487e-8, -0.1809129475572494194263306266719e-10, - 0.6221098041892605227126015543416e-13, -0.3399615005417721944303330599666e-15, - 0.2683181998482698748957538846666e-17, -0.2868042435334643284144622399999e-19, - 0.3962837061046434803679306666666e-21, -0.6831888753985766870111999999999e-23, - 0.1429227355942498147573333333333e-24, -0.3547598158101070547199999999999e-26, - 0.1025680058010470912000000000000e-27, -0.3401102254316748799999999999999e-29, - 0.1276642195630062933333333333333e-30, + if argsList.Len()%2 != 0 { + return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } - nalgm := chebyshevInit(15, d1mach(3), algmcs) - xbig := 1.0 / math.Sqrt(d1mach(3)) - xmax := math.Exp(math.Min(math.Log(d1mach(2)/12.0), -math.Log(12.0*d1mach(1)))) - if x < 10.0 { - return math.NaN() - } else if x >= xmax { - return 4.930380657631324e-32 - } else if x < xbig { - tmp := 10.0 / x - return chebyshevEval(nalgm, tmp*tmp*2.0-1.0, algmcs) / x + args := []formulaArg{} + for arg := argsList.Front(); arg != nil; arg = arg.Next() { + args = append(args, arg.Value.(formulaArg)) } - return 1.0 / (x * 12.0) + return newNumberFormulaArg(float64(len(formulaIfsMatch(args)))) } -// logrelerr compute the relative error logarithm. -func logrelerr(x float64) float64 { - alnrcs := []float64{ - 0.10378693562743769800686267719098e+1, -0.13364301504908918098766041553133, - 0.19408249135520563357926199374750e-1, -0.30107551127535777690376537776592e-2, - 0.48694614797154850090456366509137e-3, -0.81054881893175356066809943008622e-4, - 0.13778847799559524782938251496059e-4, -0.23802210894358970251369992914935e-5, - 0.41640416213865183476391859901989e-6, -0.73595828378075994984266837031998e-7, - 0.13117611876241674949152294345011e-7, -0.23546709317742425136696092330175e-8, - 0.42522773276034997775638052962567e-9, -0.77190894134840796826108107493300e-10, - 0.14075746481359069909215356472191e-10, -0.25769072058024680627537078627584e-11, - 0.47342406666294421849154395005938e-12, -0.87249012674742641745301263292675e-13, - 0.16124614902740551465739833119115e-13, -0.29875652015665773006710792416815e-14, - 0.55480701209082887983041321697279e-15, -0.10324619158271569595141333961932e-15, - 0.19250239203049851177878503244868e-16, -0.35955073465265150011189707844266e-17, - 0.67264542537876857892194574226773e-18, -0.12602624168735219252082425637546e-18, - 0.23644884408606210044916158955519e-19, -0.44419377050807936898878389179733e-20, - 0.83546594464034259016241293994666e-21, -0.15731559416479562574899253521066e-21, - 0.29653128740247422686154369706666e-22, -0.55949583481815947292156013226666e-23, - 0.10566354268835681048187284138666e-23, -0.19972483680670204548314999466666e-24, - 0.37782977818839361421049855999999e-25, -0.71531586889081740345038165333333e-26, - 0.13552488463674213646502024533333e-26, -0.25694673048487567430079829333333e-27, - 0.48747756066216949076459519999999e-28, -0.92542112530849715321132373333333e-29, - 0.17578597841760239233269760000000e-29, -0.33410026677731010351377066666666e-30, - 0.63533936180236187354180266666666e-31, +// DEVSQ function calculates the sum of the squared deviations from the sample +// mean. The syntax of the function is: +// +// DEVSQ(number1,[number2],...) +// +func (fn *formulaFuncs) DEVSQ(argsList *list.List) formulaArg { + if argsList.Len() < 1 { + return newErrorFormulaArg(formulaErrorVALUE, "DEVSQ requires at least 1 numeric argument") } - nlnrel := chebyshevInit(43, 0.1*d1mach(3), alnrcs) - if x <= -1 { - return math.NaN() + avg, count, result := fn.AVERAGE(argsList), -1, 0.0 + for arg := argsList.Front(); arg != nil; arg = arg.Next() { + for _, number := range arg.Value.(formulaArg).ToList() { + num := number.ToNumber() + if num.Type != ArgNumber { + continue + } + count++ + if count == 0 { + result = math.Pow(num.Number-avg.Number, 2) + continue + } + result += math.Pow(num.Number-avg.Number, 2) + } } - if math.Abs(x) <= 0.375 { - return x * (1.0 - x*chebyshevEval(nlnrel, x/0.375, alnrcs)) + if count == -1 { + return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } - return math.Log(x + 1.0) + return newNumberFormulaArg(result) } -// logBeta is an implementation for the log of the beta distribution -// function. -func logBeta(a, b float64) float64 { - corr, p, q := 0.0, a, a - if b < p { - p = b +// FISHER function calculates the Fisher Transformation for a supplied value. +// The syntax of the function is: +// +// FISHER(x) +// +func (fn *formulaFuncs) FISHER(argsList *list.List) formulaArg { + if argsList.Len() != 1 { + return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument") } - if b > q { - q = b + token := argsList.Front().Value.(formulaArg) + switch token.Type { + case ArgString: + arg := token.ToNumber() + if arg.Type == ArgNumber { + if arg.Number <= -1 || arg.Number >= 1 { + return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) + } + return newNumberFormulaArg(0.5 * math.Log((1+arg.Number)/(1-arg.Number))) + } + case ArgNumber: + if token.Number <= -1 || token.Number >= 1 { + return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) + } + return newNumberFormulaArg(0.5 * math.Log((1+token.Number)/(1-token.Number))) } - if p < 0 { - return math.NaN() + return newErrorFormulaArg(formulaErrorVALUE, "FISHER requires 1 numeric argument") +} + +// FISHERINV function calculates the inverse of the Fisher Transformation and +// returns a value between -1 and +1. The syntax of the function is: +// +// FISHERINV(y) +// +func (fn *formulaFuncs) FISHERINV(argsList *list.List) formulaArg { + if argsList.Len() != 1 { + return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument") } - if p == 0 { - return math.MaxFloat64 + token := argsList.Front().Value.(formulaArg) + switch token.Type { + case ArgString: + arg := token.ToNumber() + if arg.Type == ArgNumber { + return newNumberFormulaArg((math.Exp(2*arg.Number) - 1) / (math.Exp(2*arg.Number) + 1)) + } + case ArgNumber: + return newNumberFormulaArg((math.Exp(2*token.Number) - 1) / (math.Exp(2*token.Number) + 1)) } - if p >= 10.0 { - corr = lgammacor(p) + lgammacor(q) - lgammacor(p+q) - return math.Log(q)*-0.5 + 0.918938533204672741780329736406 + corr + (p-0.5)*math.Log(p/(p+q)) + q*logrelerr(-p/(p+q)) + return newErrorFormulaArg(formulaErrorVALUE, "FISHERINV requires 1 numeric argument") +} + +// GAMMA function returns the value of the Gamma Function, Γ(n), for a +// specified number, n. The syntax of the function is: +// +// GAMMA(number) +// +func (fn *formulaFuncs) GAMMA(argsList *list.List) formulaArg { + if argsList.Len() != 1 { + return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument") } - if q >= 10 { - corr = lgammacor(q) - lgammacor(p+q) - val, _ := math.Lgamma(p) - return val + corr + p - p*math.Log(p+q) + (q-0.5)*logrelerr(-p/(p+q)) + token := argsList.Front().Value.(formulaArg) + switch token.Type { + case ArgString: + arg := token.ToNumber() + if arg.Type == ArgNumber { + if arg.Number <= 0 { + return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) + } + return newNumberFormulaArg(math.Gamma(arg.Number)) + } + case ArgNumber: + if token.Number <= 0 { + return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) + } + return newNumberFormulaArg(math.Gamma(token.Number)) } - return math.Log(math.Gamma(p) * (math.Gamma(q) / math.Gamma(p+q))) + return newErrorFormulaArg(formulaErrorVALUE, "GAMMA requires 1 numeric argument") } -// pbetaRaw is a part of pbeta for the beta distribution. -func pbetaRaw(alnsml, ans, eps, p, pin, q, sml, x, y float64) float64 { - if q > 1.0 { - xb := p*math.Log(y) + q*math.Log(1.0-y) - logBeta(p, q) - math.Log(q) - ib := int(math.Max(xb/alnsml, 0.0)) - term := math.Exp(xb - float64(ib)*alnsml) - c := 1.0 / (1.0 - y) - p1 := q * c / (p + q - 1.0) - finsum := 0.0 - n := int(q) - if q == float64(n) { - n = n - 1 - } - for i := 1; i <= n; i++ { - if p1 <= 1 && term/eps <= finsum { - break - } - xi := float64(i) - term = (q - xi + 1.0) * c * term / (p + q - xi) - if term > 1.0 { - ib = ib - 1 - term = term * sml - } - if ib == 0 { - finsum = finsum + term +// GAMMALN function returns the natural logarithm of the Gamma Function, Γ +// (n). The syntax of the function is: +// +// GAMMALN(x) +// +func (fn *formulaFuncs) GAMMALN(argsList *list.List) formulaArg { + if argsList.Len() != 1 { + return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument") + } + token := argsList.Front().Value.(formulaArg) + switch token.Type { + case ArgString: + arg := token.ToNumber() + if arg.Type == ArgNumber { + if arg.Number <= 0 { + return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } + return newNumberFormulaArg(math.Log(math.Gamma(arg.Number))) + } + case ArgNumber: + if token.Number <= 0 { + return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) } - ans = ans + finsum + return newNumberFormulaArg(math.Log(math.Gamma(token.Number))) } - if y != x || p != pin { - ans = 1.0 - ans + return newErrorFormulaArg(formulaErrorVALUE, "GAMMALN requires 1 numeric argument") +} + +// GEOMEAN function calculates the geometric mean of a supplied set of values. +// The syntax of the function is: +// +// GEOMEAN(number1,[number2],...) +// +func (fn *formulaFuncs) GEOMEAN(argsList *list.List) formulaArg { + if argsList.Len() < 1 { + return newErrorFormulaArg(formulaErrorVALUE, "GEOMEAN requires at least 1 numeric argument") } - ans = math.Max(math.Min(ans, 1.0), 0.0) - return ans + product := fn.PRODUCT(argsList) + if product.Type != ArgNumber { + return product + } + count := fn.COUNT(argsList) + min := fn.MIN(argsList) + if product.Number > 0 && min.Number > 0 { + return newNumberFormulaArg(math.Pow(product.Number, (1 / count.Number))) + } + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } -// pbeta returns distribution function of the beta distribution. -func pbeta(x, pin, qin float64) (ans float64) { - eps := d1mach(3) - alneps := math.Log(eps) - sml := d1mach(1) - alnsml := math.Log(sml) - y := x - p := pin - q := qin - if p/(p+q) < x { - y = 1.0 - y - p = qin - q = pin +// HARMEAN function calculates the harmonic mean of a supplied set of values. +// The syntax of the function is: +// +// HARMEAN(number1,[number2],...) +// +func (fn *formulaFuncs) HARMEAN(argsList *list.List) formulaArg { + if argsList.Len() < 1 { + return newErrorFormulaArg(formulaErrorVALUE, "HARMEAN requires at least 1 argument") } - if (p+q)*y/(p+1.0) < eps { - xb := p*math.Log(math.Max(y, sml)) - math.Log(p) - logBeta(p, q) - if xb > alnsml && y != 0.0 { - ans = math.Exp(xb) - } - if y != x || p != pin { - ans = 1.0 - ans - } - } else { - ps := q - math.Floor(q) - if ps == 0.0 { - ps = 1.0 - } - xb := p*math.Log(y) - logBeta(ps, p) - math.Log(p) - if xb >= alnsml { - ans = math.Exp(xb) - term := ans * p - if ps != 1.0 { - n := int(math.Max(alneps/math.Log(y), 4.0)) - for i := 1; i <= n; i++ { - xi := float64(i) - term = term * (xi - ps) * y / xi - ans = ans + term/(p+xi) - } + if min := fn.MIN(argsList); min.Number < 0 { + return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) + } + number, val, cnt := 0.0, 0.0, 0.0 + for token := argsList.Front(); token != nil; token = token.Next() { + arg := token.Value.(formulaArg) + switch arg.Type { + case ArgString: + num := arg.ToNumber() + if num.Type != ArgNumber { + continue } + number = num.Number + case ArgNumber: + number = arg.Number } - ans = pbetaRaw(alnsml, ans, eps, p, pin, q, sml, x, y) + if number <= 0 { + return newErrorFormulaArg(formulaErrorNA, formulaErrorNA) + } + val += (1 / number) + cnt++ } - return ans + return newNumberFormulaArg(1 / (val / cnt)) } -// betainvProbIterator is a part of betainv for the inverse of the beta function. -func betainvProbIterator(alpha1, alpha3, beta1, beta2, beta3, logbeta, lower, maxCumulative, prob1, prob2, upper float64, needSwap bool) float64 { - var i, j, prev, prop4 float64 - j = 1 - for prob := 0; prob < 1000; prob++ { - prop3 := pbeta(beta3, alpha1, beta1) - prop3 = (prop3 - prob1) * math.Exp(logbeta+prob2*math.Log(beta3)+beta2*math.Log(1.0-beta3)) - if prop3*prop4 <= 0 { - prev = math.Max(math.Abs(j), maxCumulative) - } - h := 1.0 - for iteratorCount := 0; iteratorCount < 1000; iteratorCount++ { - j = h * prop3 - if math.Abs(j) < prev { - i = beta3 - j - if i >= 0 && i <= 1.0 { - if prev <= alpha3 { - return beta3 - } - if math.Abs(prop3) <= alpha3 { - return beta3 - } - if i != 0 && i != 1.0 { - break +// KURT function calculates the kurtosis of a supplied set of values. The +// syntax of the function is: +// +// KURT(number1,[number2],...) +// +func (fn *formulaFuncs) KURT(argsList *list.List) formulaArg { + if argsList.Len() < 1 { + return newErrorFormulaArg(formulaErrorVALUE, "KURT requires at least 1 argument") + } + mean, stdev := fn.AVERAGE(argsList), fn.STDEV(argsList) + if stdev.Number > 0 { + count, summer := 0.0, 0.0 + for arg := argsList.Front(); arg != nil; arg = arg.Next() { + token := arg.Value.(formulaArg) + switch token.Type { + case ArgString, ArgNumber: + num := token.ToNumber() + if num.Type == ArgError { + continue + } + summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4) + count++ + case ArgList, ArgMatrix: + for _, row := range token.ToList() { + if row.Type == ArgNumber || row.Type == ArgString { + num := row.ToNumber() + if num.Type == ArgError { + continue + } + summer += math.Pow((num.Number-mean.Number)/stdev.Number, 4) + count++ } } } - h /= 3.0 } - if i == beta3 { - return beta3 + if count > 3 { + return newNumberFormulaArg(summer*(count*(count+1)/((count-1)*(count-2)*(count-3))) - (3 * math.Pow(count-1, 2) / ((count - 2) * (count - 3)))) } - beta3, prop4 = i, prop3 } - return beta3 + return newErrorFormulaArg(formulaErrorDIV, formulaErrorDIV) } -// betainv is an implementation for the quantile of the beta distribution. -func betainv(probability, alpha, beta, lower, upper float64) float64 { - minCumulative, maxCumulative := 1.0e-300, 3.0e-308 - lowerBound, upperBound := maxCumulative, 1.0-2.22e-16 - needSwap := false - var alpha1, alpha2, beta1, beta2, beta3, prob1, x, y float64 - if probability <= 0.5 { - prob1, alpha1, beta1 = probability, alpha, beta - } else { - prob1, alpha1, beta1, needSwap = 1.0-probability, beta, alpha, true +// EXPONdotDIST function returns the value of the exponential distribution for +// a give value of x. The user can specify whether the probability density +// function or the cumulative distribution function is used. The syntax of the +// Expondist function is: +// +// EXPON.DIST(x,lambda,cumulative) +// +func (fn *formulaFuncs) EXPONdotDIST(argsList *list.List) formulaArg { + if argsList.Len() != 3 { + return newErrorFormulaArg(formulaErrorVALUE, "EXPON.DIST requires 3 arguments") } - logbeta := logBeta(alpha, beta) - prob2 := math.Sqrt(-math.Log(prob1 * prob1)) - prob3 := prob2 - (prob2*0.27061+2.3075)/(prob2*(prob2*0.04481+0.99229)+1) - if alpha1 > 1 && beta1 > 1 { - alpha2, beta2, prob2 = 1/(alpha1+alpha1-1), 1/(beta1+beta1-1), (prob3*prob3-3)/6 - x = 2 / (alpha2 + beta2) - y = prob3*math.Sqrt(x+prob2)/x - (beta2-alpha2)*(prob2+5/6.0-2/(x*3)) - beta3 = alpha1 / (alpha1 + beta1*math.Exp(y+y)) - } else { - beta2, prob2 = 1/(beta1*9), beta1+beta1 - beta2 = prob2 * math.Pow(1-beta2+prob3*math.Sqrt(beta2), 3) - if beta2 <= 0 { - beta3 = 1 - math.Exp((math.Log((1-prob1)*beta1)+logbeta)/beta1) - } else { - beta2 = (prob2 + alpha1*4 - 2) / beta2 - if beta2 <= 1 { - beta3 = math.Exp((logbeta + math.Log(alpha1*prob1)) / alpha1) - } else { - beta3 = 1 - 2/(beta2+1) - } - } + return fn.EXPONDIST(argsList) +} + +// EXPONDIST function returns the value of the exponential distribution for a +// give value of x. The user can specify whether the probability density +// function or the cumulative distribution function is used. The syntax of the +// Expondist function is: +// +// EXPONDIST(x,lambda,cumulative) +// +func (fn *formulaFuncs) EXPONDIST(argsList *list.List) formulaArg { + if argsList.Len() != 3 { + return newErrorFormulaArg(formulaErrorVALUE, "EXPONDIST requires 3 arguments") } - beta2, prob2 = 1-beta1, 1-alpha1 - if beta3 < lowerBound { - beta3 = lowerBound - } else if beta3 > upperBound { - beta3 = upperBound + var x, lambda, cumulative formulaArg + if x = argsList.Front().Value.(formulaArg).ToNumber(); x.Type != ArgNumber { + return x } - alpha3 := math.Max(minCumulative, math.Pow(10.0, -13.0-2.5/(alpha1*alpha1)-0.5/(prob1*prob1))) - beta3 = betainvProbIterator(alpha1, alpha3, beta1, beta2, beta3, logbeta, lower, maxCumulative, prob1, prob2, upper, needSwap) - if needSwap { - beta3 = 1.0 - beta3 + if lambda = argsList.Front().Next().Value.(formulaArg).ToNumber(); lambda.Type != ArgNumber { + return lambda } - return (upper-lower)*beta3 + lower + if cumulative = argsList.Back().Value.(formulaArg).ToBool(); cumulative.Type == ArgError { + return cumulative + } + if x.Number < 0 { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + } + if lambda.Number <= 0 { + return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) + } + if cumulative.Number == 1 { + return newNumberFormulaArg(1 - math.Exp(-lambda.Number*x.Number)) + } + return newNumberFormulaArg(lambda.Number * math.Exp(-lambda.Number*x.Number)) } -// FINV function calculates the inverse of the (right-tailed) F Probability -// Distribution for a supplied probability. The syntax of the function is: -// -// FINV(probability,deg_freedom1,deg_freedom2) -// -func (fn *formulaFuncs) FINV(argsList *list.List) formulaArg { +// finv is an implementation of the formula functions F.INV.RT and FINV. +func (fn *formulaFuncs) finv(name string, argsList *list.List) formulaArg { if argsList.Len() != 3 { - return newErrorFormulaArg(formulaErrorVALUE, "FINV requires 3 arguments") + return newErrorFormulaArg(formulaErrorVALUE, fmt.Sprintf("%s requires 3 arguments", name)) } var probability, d1, d2 formulaArg if probability = argsList.Front().Value.(formulaArg).ToNumber(); probability.Type != ArgNumber { @@ -6167,7 +6232,26 @@ func (fn *formulaFuncs) FINV(argsList *list.List) formulaArg { if d2.Number < 1 || d2.Number >= math.Pow10(10) { return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM) } - return newNumberFormulaArg((1/betainv(1.0-(1.0-probability.Number), d2.Number/2, d1.Number/2, 0, 1) - 1.0) * (d2.Number / d1.Number)) + return newNumberFormulaArg((1/calcBetainv(1.0-(1.0-probability.Number), d2.Number/2, d1.Number/2, 0, 1) - 1.0) * (d2.Number / d1.Number)) +} + +// FdotINVdotRT function calculates the inverse of the (right-tailed) F +// Probability Distribution for a supplied probability. The syntax of the +// function is: +// +// F.INV.RT(probability,deg_freedom1,deg_freedom2) +// +func (fn *formulaFuncs) FdotINVdotRT(argsList *list.List) formulaArg { + return fn.finv("F.INV.RT", argsList) +} + +// FINV function calculates the inverse of the (right-tailed) F Probability +// Distribution for a supplied probability. The syntax of the function is: +// +// FINV(probability,deg_freedom1,deg_freedom2) +// +func (fn *formulaFuncs) FINV(argsList *list.List) formulaArg { + return fn.finv("FINV", argsList) } // NORMdotDIST function calculates the Normal Probability Density Function or diff --git a/calc_test.go b/calc_test.go index 80ba8ef..63e5984 100644 --- a/calc_test.go +++ b/calc_test.go @@ -784,6 +784,10 @@ func TestCalcCellValue(t *testing.T) { "=AVERAGEA(A1)": "1", "=AVERAGEA(A1:A2)": "1.5", "=AVERAGEA(D2:F9)": "12671.375", + // BETAINV + "=BETAINV(0.2,4,5,0,1)": "0.303225844664082", + // BETA.INV + "=BETA.INV(0.2,4,5,0,1)": "0.303225844664082", // CHIDIST "=CHIDIST(0.5,3)": "0.918891411654676", "=CHIDIST(8,3)": "0.0460117056892315", @@ -859,6 +863,14 @@ func TestCalcCellValue(t *testing.T) { "=FINV(0.5,4,8)": "0.914645355977072", "=FINV(0.1,79,86)": "1.32646097270444", "=FINV(1,40,5)": "0", + // F.INV.RT + "=F.INV.RT(0.2,1,2)": "3.55555555555555", + "=F.INV.RT(0.6,1,2)": "0.380952380952381", + "=F.INV.RT(0.6,2,2)": "0.666666666666667", + "=F.INV.RT(0.6,4,4)": "0.763454070045235", + "=F.INV.RT(0.5,4,8)": "0.914645355977072", + "=F.INV.RT(0.1,79,86)": "1.32646097270444", + "=F.INV.RT(1,40,5)": "0", // NORM.DIST "=NORM.DIST(0.8,1,0.3,TRUE)": "0.252492537546923", "=NORM.DIST(50,40,20,FALSE)": "0.017603266338215", @@ -2282,6 +2294,32 @@ func TestCalcCellValue(t *testing.T) { "=AVERAGE(H1)": "AVERAGE divide by zero", // AVERAGEA "=AVERAGEA(H1)": "AVERAGEA divide by zero", + // BETAINV + "=BETAINV()": "BETAINV requires at least 3 arguments", + "=BETAINV(0.2,4,5,0,1,0)": "BETAINV requires at most 5 arguments", + "=BETAINV(\"\",4,5,0,1)": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=BETAINV(0.2,\"\",5,0,1)": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=BETAINV(0.2,4,\"\",0,1)": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=BETAINV(0.2,4,5,\"\",1)": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=BETAINV(0.2,4,5,0,\"\")": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=BETAINV(0,4,5,0,1)": "#NUM!", + "=BETAINV(1,4,5,0,1)": "#NUM!", + "=BETAINV(0.2,0,5,0,1)": "#NUM!", + "=BETAINV(0.2,4,0,0,1)": "#NUM!", + "=BETAINV(0.2,4,5,2,2)": "#NUM!", + // BETA.INV + "=BETA.INV()": "BETA.INV requires at least 3 arguments", + "=BETA.INV(0.2,4,5,0,1,0)": "BETA.INV requires at most 5 arguments", + "=BETA.INV(\"\",4,5,0,1)": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=BETA.INV(0.2,\"\",5,0,1)": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=BETA.INV(0.2,4,\"\",0,1)": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=BETA.INV(0.2,4,5,\"\",1)": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=BETA.INV(0.2,4,5,0,\"\")": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=BETA.INV(0,4,5,0,1)": "#NUM!", + "=BETA.INV(1,4,5,0,1)": "#NUM!", + "=BETA.INV(0.2,0,5,0,1)": "#NUM!", + "=BETA.INV(0.2,4,0,0,1)": "#NUM!", + "=BETA.INV(0.2,4,5,2,2)": "#NUM!", // AVERAGEIF "=AVERAGEIF()": "AVERAGEIF requires at least 2 arguments", "=AVERAGEIF(H1,\"\")": "AVERAGEIF divide by zero", @@ -2375,6 +2413,14 @@ func TestCalcCellValue(t *testing.T) { "=FINV(0,1,2)": "#NUM!", "=FINV(0.2,0.5,2)": "#NUM!", "=FINV(0.2,1,0.5)": "#NUM!", + // F.INV.RT + "=F.INV.RT()": "F.INV.RT requires 3 arguments", + "=F.INV.RT(\"\",1,2)": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=F.INV.RT(0.2,\"\",2)": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=F.INV.RT(0.2,1,\"\")": "strconv.ParseFloat: parsing \"\": invalid syntax", + "=F.INV.RT(0,1,2)": "#NUM!", + "=F.INV.RT(0.2,0.5,2)": "#NUM!", + "=F.INV.RT(0.2,1,0.5)": "#NUM!", // NORM.DIST "=NORM.DIST()": "NORM.DIST requires 4 arguments", // NORMDIST diff --git a/excelize_test.go b/excelize_test.go index bafd446..7d38304 100644 --- a/excelize_test.go +++ b/excelize_test.go @@ -130,14 +130,17 @@ func TestOpenFile(t *testing.T) { // Test boolean write booltest := []struct { value bool + raw bool expected string }{ - {false, "0"}, - {true, "1"}, + {false, true, "0"}, + {true, true, "1"}, + {false, false, "FALSE"}, + {true, false, "TRUE"}, } for _, test := range booltest { assert.NoError(t, f.SetCellValue("Sheet2", "F16", test.value)) - val, err := f.GetCellValue("Sheet2", "F16") + val, err := f.GetCellValue("Sheet2", "F16", Options{RawCellValue: test.raw}) assert.NoError(t, err) assert.Equal(t, test.expected, val) } diff --git a/rows.go b/rows.go index 0d2490c..81eaeeb 100644 --- a/rows.go +++ b/rows.go @@ -429,6 +429,16 @@ func (c *xlsxC) getValueFrom(f *File, d *xlsxSST, raw bool) (string, error) { f.Lock() defer f.Unlock() switch c.T { + case "b": + if !raw { + if c.V == "1" { + return "TRUE", nil + } + if c.V == "0" { + return "FALSE", nil + } + } + return f.formattedValue(c.S, c.V, raw), nil case "s": if c.V != "" { xlsxSI := 0 diff --git a/rows_test.go b/rows_test.go index 208b2de..22b038a 100644 --- a/rows_test.go +++ b/rows_test.go @@ -950,6 +950,10 @@ func TestNumberFormats(t *testing.T) { assert.NoError(t, f.Close()) } +func TestRoundPrecision(t *testing.T) { + assert.Equal(t, "text", roundPrecision("text", 0)) +} + func BenchmarkRows(b *testing.B) { f, _ := OpenFile(filepath.Join("test", "Book1.xlsx")) for i := 0; i < b.N; i++ {