|
|
|
@ -333,6 +333,7 @@ type formulaFuncs struct {
|
|
|
|
|
// BESSELJ
|
|
|
|
|
// BESSELK
|
|
|
|
|
// BESSELY
|
|
|
|
|
// BETADIST
|
|
|
|
|
// BETAINV
|
|
|
|
|
// BETA.INV
|
|
|
|
|
// BIN2DEC
|
|
|
|
@ -348,6 +349,7 @@ type formulaFuncs struct {
|
|
|
|
|
// CEILING.PRECISE
|
|
|
|
|
// CHAR
|
|
|
|
|
// CHIDIST
|
|
|
|
|
// CHIINV
|
|
|
|
|
// CHOOSE
|
|
|
|
|
// CLEAN
|
|
|
|
|
// CODE
|
|
|
|
@ -5200,6 +5202,257 @@ func (fn *formulaFuncs) AVERAGEIF(argsList *list.List) formulaArg {
|
|
|
|
|
return newNumberFormulaArg(sum / count)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// getBetaHelperContFrac continued fractions for the beta function.
|
|
|
|
|
func getBetaHelperContFrac(fX, fA, fB float64) float64 {
|
|
|
|
|
var a1, b1, a2, b2, fnorm, cfnew, cf, rm float64
|
|
|
|
|
a1, b1, b2 = 1, 1, 1-(fA+fB)/(fA+1)*fX
|
|
|
|
|
if b2 == 0 {
|
|
|
|
|
a2, fnorm, cf = 0, 1, 1
|
|
|
|
|
} else {
|
|
|
|
|
a2, fnorm = 1, 1/b2
|
|
|
|
|
cf = a2 * fnorm
|
|
|
|
|
}
|
|
|
|
|
cfnew, rm = 1, 1
|
|
|
|
|
fMaxIter, fMachEps := 50000.0, 2.22045e-016
|
|
|
|
|
bfinished := false
|
|
|
|
|
for rm < fMaxIter && !bfinished {
|
|
|
|
|
apl2m := fA + 2*rm
|
|
|
|
|
d2m := rm * (fB - rm) * fX / ((apl2m - 1) * apl2m)
|
|
|
|
|
d2m1 := -(fA + rm) * (fA + fB + rm) * fX / (apl2m * (apl2m + 1))
|
|
|
|
|
a1 = (a2 + d2m*a1) * fnorm
|
|
|
|
|
b1 = (b2 + d2m*b1) * fnorm
|
|
|
|
|
a2 = a1 + d2m1*a2*fnorm
|
|
|
|
|
b2 = b1 + d2m1*b2*fnorm
|
|
|
|
|
if b2 != 0 {
|
|
|
|
|
fnorm = 1 / b2
|
|
|
|
|
cfnew = a2 * fnorm
|
|
|
|
|
bfinished = (math.Abs(cf-cfnew) < math.Abs(cf)*fMachEps)
|
|
|
|
|
}
|
|
|
|
|
cf = cfnew
|
|
|
|
|
rm += 1
|
|
|
|
|
}
|
|
|
|
|
return cf
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// getLanczosSum uses a variant of the Lanczos sum with a rational function.
|
|
|
|
|
func getLanczosSum(fZ float64) float64 {
|
|
|
|
|
num := []float64{
|
|
|
|
|
23531376880.41075968857200767445163675473,
|
|
|
|
|
42919803642.64909876895789904700198885093,
|
|
|
|
|
35711959237.35566804944018545154716670596,
|
|
|
|
|
17921034426.03720969991975575445893111267,
|
|
|
|
|
6039542586.35202800506429164430729792107,
|
|
|
|
|
1439720407.311721673663223072794912393972,
|
|
|
|
|
248874557.8620541565114603864132294232163,
|
|
|
|
|
31426415.58540019438061423162831820536287,
|
|
|
|
|
2876370.628935372441225409051620849613599,
|
|
|
|
|
186056.2653952234950402949897160456992822,
|
|
|
|
|
8071.672002365816210638002902272250613822,
|
|
|
|
|
210.8242777515793458725097339207133627117,
|
|
|
|
|
2.506628274631000270164908177133837338626,
|
|
|
|
|
}
|
|
|
|
|
denom := []float64{
|
|
|
|
|
0,
|
|
|
|
|
39916800,
|
|
|
|
|
120543840,
|
|
|
|
|
150917976,
|
|
|
|
|
105258076,
|
|
|
|
|
45995730,
|
|
|
|
|
13339535,
|
|
|
|
|
2637558,
|
|
|
|
|
357423,
|
|
|
|
|
32670,
|
|
|
|
|
1925,
|
|
|
|
|
66,
|
|
|
|
|
1,
|
|
|
|
|
}
|
|
|
|
|
var sumNum, sumDenom, zInv float64
|
|
|
|
|
if fZ <= 1 {
|
|
|
|
|
sumNum = num[12]
|
|
|
|
|
sumDenom = denom[12]
|
|
|
|
|
for i := 11; i >= 0; i-- {
|
|
|
|
|
sumNum *= fZ
|
|
|
|
|
sumNum += num[i]
|
|
|
|
|
sumDenom *= fZ
|
|
|
|
|
sumDenom += denom[i]
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
zInv = 1 / fZ
|
|
|
|
|
sumNum = num[0]
|
|
|
|
|
sumDenom = denom[0]
|
|
|
|
|
for i := 1; i <= 12; i++ {
|
|
|
|
|
sumNum *= zInv
|
|
|
|
|
sumNum += num[i]
|
|
|
|
|
sumDenom *= zInv
|
|
|
|
|
sumDenom += denom[i]
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return sumNum / sumDenom
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// getBeta return beta distribution.
|
|
|
|
|
func getBeta(fAlpha, fBeta float64) float64 {
|
|
|
|
|
var fA, fB float64
|
|
|
|
|
if fAlpha > fBeta {
|
|
|
|
|
fA = fAlpha
|
|
|
|
|
fB = fBeta
|
|
|
|
|
} else {
|
|
|
|
|
fA = fBeta
|
|
|
|
|
fB = fAlpha
|
|
|
|
|
}
|
|
|
|
|
const maxGammaArgument = 171.624376956302
|
|
|
|
|
if fA+fB < maxGammaArgument {
|
|
|
|
|
return math.Gamma(fA) / math.Gamma(fA+fB) * math.Gamma(fB)
|
|
|
|
|
}
|
|
|
|
|
fg := 6.024680040776729583740234375
|
|
|
|
|
fgm := fg - 0.5
|
|
|
|
|
fLanczos := getLanczosSum(fA)
|
|
|
|
|
fLanczos /= getLanczosSum(fA + fB)
|
|
|
|
|
fLanczos *= getLanczosSum(fB)
|
|
|
|
|
fABgm := fA + fB + fgm
|
|
|
|
|
fLanczos *= math.Sqrt((fABgm / (fA + fgm)) / (fB + fgm))
|
|
|
|
|
fTempA := fB / (fA + fgm)
|
|
|
|
|
fTempB := fA / (fB + fgm)
|
|
|
|
|
fResult := math.Exp(-fA*math.Log1p(fTempA) - fB*math.Log1p(fTempB) - fgm)
|
|
|
|
|
fResult *= fLanczos
|
|
|
|
|
return fResult
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// getBetaDistPDF is an implementation for the Beta probability density
|
|
|
|
|
// function.
|
|
|
|
|
func getBetaDistPDF(fX, fA, fB float64) float64 {
|
|
|
|
|
if fX <= 0 || fX >= 1 {
|
|
|
|
|
return 0
|
|
|
|
|
}
|
|
|
|
|
fLogDblMax, fLogDblMin := math.Log(1.79769e+308), math.Log(2.22507e-308)
|
|
|
|
|
fLogY := math.Log(0.5 - fX + 0.5)
|
|
|
|
|
if fX < 0.1 {
|
|
|
|
|
fLogY = math.Log1p(-fX)
|
|
|
|
|
}
|
|
|
|
|
fLogX := math.Log(fX)
|
|
|
|
|
fAm1LogX := (fA - 1) * fLogX
|
|
|
|
|
fBm1LogY := (fB - 1) * fLogY
|
|
|
|
|
fLogBeta := getLogBeta(fA, fB)
|
|
|
|
|
if fAm1LogX < fLogDblMax && fAm1LogX > fLogDblMin && fBm1LogY < fLogDblMax &&
|
|
|
|
|
fBm1LogY > fLogDblMin && fLogBeta < fLogDblMax && fLogBeta > fLogDblMin &&
|
|
|
|
|
fAm1LogX+fBm1LogY < fLogDblMax && fAm1LogX+fBm1LogY > fLogDblMin {
|
|
|
|
|
return math.Pow(fX, fA-1) * math.Pow(0.5-fX+0.5, fB-1) / getBeta(fA, fB)
|
|
|
|
|
}
|
|
|
|
|
return math.Exp(fAm1LogX + fBm1LogY - fLogBeta)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// getLogBeta return beta with logarithm.
|
|
|
|
|
func getLogBeta(fAlpha, fBeta float64) float64 {
|
|
|
|
|
var fA, fB float64
|
|
|
|
|
if fAlpha > fBeta {
|
|
|
|
|
fA, fB = fAlpha, fBeta
|
|
|
|
|
} else {
|
|
|
|
|
fA, fB = fBeta, fAlpha
|
|
|
|
|
}
|
|
|
|
|
fg := 6.024680040776729583740234375
|
|
|
|
|
fgm := fg - 0.5
|
|
|
|
|
fLanczos := getLanczosSum(fA)
|
|
|
|
|
fLanczos /= getLanczosSum(fA + fB)
|
|
|
|
|
fLanczos *= getLanczosSum(fB)
|
|
|
|
|
fLogLanczos := math.Log(fLanczos)
|
|
|
|
|
fABgm := fA + fB + fgm
|
|
|
|
|
fLogLanczos += 0.5 * (math.Log(fABgm) - math.Log(fA+fgm) - math.Log(fB+fgm))
|
|
|
|
|
fTempA := fB / (fA + fgm)
|
|
|
|
|
fTempB := fA / (fB + fgm)
|
|
|
|
|
fResult := -fA*math.Log1p(fTempA) - fB*math.Log1p(fTempB) - fgm
|
|
|
|
|
fResult += fLogLanczos
|
|
|
|
|
return fResult
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// getBetaDist is an implementation for the beta distribution function.
|
|
|
|
|
func getBetaDist(fXin, fAlpha, fBeta float64) float64 {
|
|
|
|
|
if fXin <= 0 {
|
|
|
|
|
return 0
|
|
|
|
|
}
|
|
|
|
|
if fXin >= 1 {
|
|
|
|
|
return 1
|
|
|
|
|
}
|
|
|
|
|
if fBeta == 1 {
|
|
|
|
|
return math.Pow(fXin, fAlpha)
|
|
|
|
|
}
|
|
|
|
|
if fAlpha == 1 {
|
|
|
|
|
return -math.Expm1(fBeta * math.Log1p(-fXin))
|
|
|
|
|
}
|
|
|
|
|
var fResult float64
|
|
|
|
|
fY, flnY := (0.5-fXin)+0.5, math.Log1p(-fXin)
|
|
|
|
|
fX, flnX := fXin, math.Log(fXin)
|
|
|
|
|
fA, fB := fAlpha, fBeta
|
|
|
|
|
bReflect := fXin > fAlpha/(fAlpha+fBeta)
|
|
|
|
|
if bReflect {
|
|
|
|
|
fA = fBeta
|
|
|
|
|
fB = fAlpha
|
|
|
|
|
fX = fY
|
|
|
|
|
fY = fXin
|
|
|
|
|
flnX = flnY
|
|
|
|
|
flnY = math.Log(fXin)
|
|
|
|
|
}
|
|
|
|
|
fResult = getBetaHelperContFrac(fX, fA, fB) / fA
|
|
|
|
|
fP, fQ := fA/(fA+fB), fB/(fA+fB)
|
|
|
|
|
var fTemp float64
|
|
|
|
|
if fA > 1 && fB > 1 && fP < 0.97 && fQ < 0.97 {
|
|
|
|
|
fTemp = getBetaDistPDF(fX, fA, fB) * fX * fY
|
|
|
|
|
} else {
|
|
|
|
|
fTemp = math.Exp(fA*flnX + fB*flnY - getLogBeta(fA, fB))
|
|
|
|
|
}
|
|
|
|
|
fResult *= fTemp
|
|
|
|
|
if bReflect {
|
|
|
|
|
fResult = 0.5 - fResult + 0.5
|
|
|
|
|
}
|
|
|
|
|
return fResult
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// BETADIST function calculates the cumulative beta probability density
|
|
|
|
|
// function for a supplied set of parameters. The syntax of the function is:
|
|
|
|
|
//
|
|
|
|
|
// BETADIST(x,alpha,beta,[A],[B])
|
|
|
|
|
//
|
|
|
|
|
func (fn *formulaFuncs) BETADIST(argsList *list.List) formulaArg {
|
|
|
|
|
if argsList.Len() < 3 {
|
|
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, "BETADIST requires at least 3 arguments")
|
|
|
|
|
}
|
|
|
|
|
if argsList.Len() > 5 {
|
|
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, "BETADIST requires at most 5 arguments")
|
|
|
|
|
}
|
|
|
|
|
x := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
|
|
if x.Type != ArgNumber {
|
|
|
|
|
return x
|
|
|
|
|
}
|
|
|
|
|
alpha := argsList.Front().Next().Value.(formulaArg).ToNumber()
|
|
|
|
|
if alpha.Type != ArgNumber {
|
|
|
|
|
return alpha
|
|
|
|
|
}
|
|
|
|
|
beta := argsList.Front().Next().Next().Value.(formulaArg).ToNumber()
|
|
|
|
|
if beta.Type != ArgNumber {
|
|
|
|
|
return beta
|
|
|
|
|
}
|
|
|
|
|
if alpha.Number <= 0 || beta.Number <= 0 {
|
|
|
|
|
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
|
|
}
|
|
|
|
|
a, b := newNumberFormulaArg(0), newNumberFormulaArg(1)
|
|
|
|
|
if argsList.Len() > 3 {
|
|
|
|
|
if a = argsList.Front().Next().Next().Next().Value.(formulaArg).ToNumber(); a.Type != ArgNumber {
|
|
|
|
|
return a
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if argsList.Len() == 5 {
|
|
|
|
|
if b = argsList.Back().Value.(formulaArg).ToNumber(); b.Type != ArgNumber {
|
|
|
|
|
return b
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if x.Number < a.Number || x.Number > b.Number {
|
|
|
|
|
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
|
|
}
|
|
|
|
|
if a.Number == b.Number {
|
|
|
|
|
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
|
|
}
|
|
|
|
|
return newNumberFormulaArg(getBetaDist((x.Number-a.Number)/(b.Number-a.Number), alpha.Number, beta.Number))
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// d1mach returns double precision real machine constants.
|
|
|
|
|
func d1mach(i int) float64 {
|
|
|
|
|
arr := []float64{
|
|
|
|
@ -5603,6 +5856,32 @@ func (fn *formulaFuncs) CHIDIST(argsList *list.List) formulaArg {
|
|
|
|
|
return newNumberFormulaArg(1 - (incompleteGamma(degress.Number/2, x.Number/2) / math.Gamma(degress.Number/2)))
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// CHIINV function calculates the inverse of the right-tailed probability of
|
|
|
|
|
// the Chi-Square Distribution. The syntax of the function is:
|
|
|
|
|
//
|
|
|
|
|
// CHIINV(probability,degrees_freedom)
|
|
|
|
|
//
|
|
|
|
|
func (fn *formulaFuncs) CHIINV(argsList *list.List) formulaArg {
|
|
|
|
|
if argsList.Len() != 2 {
|
|
|
|
|
return newErrorFormulaArg(formulaErrorVALUE, "CHIINV requires 2 numeric arguments")
|
|
|
|
|
}
|
|
|
|
|
probability := argsList.Front().Value.(formulaArg).ToNumber()
|
|
|
|
|
if probability.Type != ArgNumber {
|
|
|
|
|
return probability
|
|
|
|
|
}
|
|
|
|
|
if probability.Number <= 0 || probability.Number > 1 {
|
|
|
|
|
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
|
|
}
|
|
|
|
|
degress := argsList.Back().Value.(formulaArg).ToNumber()
|
|
|
|
|
if degress.Type != ArgNumber {
|
|
|
|
|
return degress
|
|
|
|
|
}
|
|
|
|
|
if degress.Number < 1 {
|
|
|
|
|
return newErrorFormulaArg(formulaErrorNUM, formulaErrorNUM)
|
|
|
|
|
}
|
|
|
|
|
return newNumberFormulaArg(gammainv(1-probability.Number, 0.5*degress.Number, 2.0))
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// confidence is an implementation of the formula functions CONFIDENCE and
|
|
|
|
|
// CONFIDENCE.NORM.
|
|
|
|
|
func (fn *formulaFuncs) confidence(name string, argsList *list.List) formulaArg {
|
|
|
|
@ -6511,7 +6790,6 @@ func (fn *formulaFuncs) LOGNORMdotDIST(argsList *list.List) formulaArg {
|
|
|
|
|
}
|
|
|
|
|
return newNumberFormulaArg((1 / (math.Sqrt(2*math.Pi) * stdDev.Number * x.Number)) *
|
|
|
|
|
math.Exp(0-(math.Pow((math.Log(x.Number)-mean.Number), 2)/(2*math.Pow(stdDev.Number, 2)))))
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// LOGNORMDIST function calculates the Cumulative Log-Normal Distribution
|
|
|
|
@ -10812,7 +11090,8 @@ func (fn *formulaFuncs) prepareXlookupArgs(argsList *list.List) formulaArg {
|
|
|
|
|
|
|
|
|
|
// xlookup is an implementation of the formula function XLOOKUP.
|
|
|
|
|
func (fn *formulaFuncs) xlookup(lookupRows, lookupCols, returnArrayRows, returnArrayCols, matchIdx int,
|
|
|
|
|
condition1, condition2, condition3, condition4 bool, returnArray formulaArg) formulaArg {
|
|
|
|
|
condition1, condition2, condition3, condition4 bool, returnArray formulaArg,
|
|
|
|
|
) formulaArg {
|
|
|
|
|
result := [][]formulaArg{}
|
|
|
|
|
for rowIdx, row := range returnArray.Matrix {
|
|
|
|
|
for colIdx, cell := range row {
|
|
|
|
|